358 research outputs found
Distinct cognitive and discriminative stimulus effects of ketamine enantiomers in rats
Although (S)-ketamine was approved for use in treatment-resistant depression in 2019, new preclinical findings suggest that (R)-ketamine might produce better efficacy and tolerability relative to (S)-ketamine. Here we evaluated the effects of (R)-, (S)-, and (R,S)-ketamine on executive functions as measured in the attentional set shifting task (ASST) and on their discriminative stimulus effects in rats. Earlier data demonstrated that cognitive flexibility is compromised by (R,S)-ketamine, but the effects of enantiomers in rats are unknown. Separate cohorts of rats were tested in ASST and trained to discriminate either (R,S)-ketamine, (S)-ketamine, or (R)-ketamine (all at 10 mg/kg) from saline; in order to maintain the discrimination, a higher (R)-ketamine dose (17.5 mg/kg) was subsequently instituted. In ASST, all three forms increased the trials to criterion measure at reversal learning and extra-dimensional set-shifting phases. However, in contrast to (R)- and (S)-ketamine, (R,S)-ketamine prolonged the mean time to complete a single trial during early stages, suggesting increased reaction time, and/or unspecific side-effects related to motor or motivational impairments. In the drug discriminations, all rats acquired their respective discriminations between drug and saline. In (R,S)-ketamine-trained rats, (R)-ketamine and (S)-ketamine only partially substituted for the training dose of (R,S)-ketamine. Further, (R)-ketamine did not fully substitute in rats trained to (S)-ketamine. The data suggest more serious cognitive deficits produced by (R,S)-ketamine than its enantiomers. Furthermore, (R,S)-ketamine and its isomers share overlapping but not isomorphic discriminative stimulus effects predicting distinct subjective responses to (R)- vs. (S)-ketamine in humans
Escherichia coli stress response systems and their reaction to terahertz radiation
In this review, we summarize the latest data concerning the reactions of Escherichia coli to nonthermal terahertz radiation and the underlying molecular mechanisms. E. coli is the most simple and convenient model object for studying the effects of terahertz radiation: both its genetics and metabolism are well studied, and it is easily amenable to genetic engineering allowing one to create biosensors using promoters of genes activated by certain stress factors and the reporter GFP protein. Transformed E. coli cells containing biosensors can be used to visualize their reactions to terahertz radiation based on the intensity of GFP fluorescence. In this review, we present data on the response of certain E. Ńoli stress response systems to terahertz radiation obtained by us, as well as by other authors. We discuss experimental results for E. Ńoli/ pKatG-GFP, E. Ńoli/pCopA-GFP, and E. Ńoli/ pEmrR-GFP biosensors that are used to detect E. Ńoli genetic networks responding to oxidative stress, copper ion homeostasis failures, and antiseptics, respectively. The obtained data indicate that exposure to nonthermal terahertz radiation induces E. Ńoli gene networks of oxidative stress and copper ion homeostasis, but does not activate those responding to antibiotics, protonophores, or superoxide anions. The fact that E. Ńoli/pKatG-GFP and E. Ńoli/pCopA-GFP biosensors have different activation and reaction periods when exposed to terahertz radiation and natural inducers suggests that reactions of oxidative stress and copper ion homeostasis systems to terahertz radiation are specific
Memantine reduces consumption of highly palatable food in a rat model of binge eating
Excessive consumption of highly palatable food has been linked to the development of eating disorders and obesity, and can be modeled in non-food-deprived rats by offering them a limited (2-h daily) access to an optional dietary fat. Since the glutamatergic system has recently emerged as a viable target for binge-eating medication development, we compared the effects of subchronic treatment with glutamatergic receptor antagonists to the effects of a reference appetite-suppressing agent sibutramine on highly palatable food (lard) and normal chow intake. In three separate experiments, the consumption of a standard laboratory chow and lard were measured during 12Â days of medication treatment and for 6Â days afterwards. Generalized estimating equations analysis demonstrated that sibutramine (7.5Â mg/kg, PO) significantly decreased lard consumption, with a concurrent increase in chow consumption. Sibutramine effects disappeared after treatment discontinuation. The NMDA receptor antagonist memantine (5Â mg/kg, IP) significantly decreased lard consumption and increased chow consumption, comparable to effects of sibutramine; however, memantineâs effects persisted after treatment discontinuation. The effects of the mGluR5 antagonist MTEP (7.5Â mg/kg, IP) on food consumption were in the same direction as seen with memantine, but the observed differences were not significant. In an additional control experiment, sibutramine and memantine reduced unlimited (24Â h) chow intake during the treatment phase. Present results provide evidence that glutamatergic neurotransmission might be involved in the regulation of excessive consumption of highly palatable foods, and suggest that NMDA receptor may be an attractive target for developing obesity and disordered eating pharmacotherapies
Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production
Š 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. Š 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)
Memantine increases NMDA receptor level in the prefrontal cortex but fails to reverse apomorphine-induced conditioned place preference in rats
Studies have shown that inflammation and neurodegeneration may accompany the development of addiction to apomorphine and that the glutamate NMDA receptor antagonist, memantine, may be neuroprotective. The similarity between apomorphine and dopamine with regard to their chemical, pharmacological and toxicological properties provided a basis for investigating the mechanism of action of the former agent. In this study, we investigated whether memantine would suppress apomorphine-seeking behavior in rats subjected to apomorphine-induced place preference conditioning, through modulation of NMDA receptors in the prefrontal cortex. Repeated apomorphine (1 mg/kg) treatment induced conditioned place preference (CPP) and had no significant effect on NMDA receptor levels in the prefrontal cortex. Prior treatment with memantine (5 mg/kg or 10 mg/kg) increased the levels of NMDA receptors in the prefrontal cortex but did not suppress CPP induced by apomorphine. These data give further support to the addictive effect of apomorphine and demonstrate that blockade of NMDA receptors by memantine is unable to suppress apomorphine-seeking behavior
The impact of terahertz radiation on an extremophilic archaean Halorubrum saccharovorum proteome
Nonthermal effects of terahertz radiation on living objects are currently intensely studied, as more sources of this radiation type and devices employing it are being constructed. Terahertz radiation is increasingly used in security and inspection systems, medical and scientific appliances due to its low quant energy, which does not cause severe effects on organisms as other radiation types with higher quant energies do. The aim of this study was the identification of protein complexes participating in the response of the archaea Halorubrum saccharovorum H3 isolated from an extreme natural environment to terahertz radiation. We developed a microfluidic system for irradiation of bacterial and archaeal cultures with terahertz radiation and performed a 5-hour-long exposure of H. saccharovorum to terahertz radiation at a wavelength of 130 Οm and a power density of 0.8 Wt per cm2 for 5 h. We identified under- or overexpressed proteins in response to terahertz radiation using 2D electrophoresis with subsequent MALDI-TOF mass spectrometry. A total of 16 differentially expressed protein fractions with at least 1.5-fold changes in expression level were detected. The obtained data suggest that Halorubrum cells respond to exposure to terahertz radiation by expression changes in gene products involved in translation regulation
X4 Human Immunodeficiency Virus Type 1 gp120 Promotes Human Hepatic Stellate Cell Activation and Collagen I Expression through Interactions with CXCR4
<div><h3>Background & Aims</h3><p>Patients coinfected with HIV-1 and HCV develop more rapid liver fibrosis than patients monoinfected with HCV. HIV RNA levels correlate with fibrosis progression implicating HIV directly in the fibrotic process. While activated hepatic stellate cells (HSCs) express the 2 major HIV chemokine coreceptors, CXCR4 and CCR5, little is known about the pro-fibrogenic effects of the HIV-1 envelope protein, gp120, on HSCs. We therefore examined the <em>in vitro</em> impact of X4 gp120 on HSC activation, collagen I expression, and underlying signaling pathways and examined the <em>in vivo</em> expression of gp120 in HIV/HCV coinfected livers.</p> <h3>Methods</h3><p>Primary human HSCs and LX-2 cells, a human HSC line, were challenged with X4 gp120 and expression of fibrogenic markers assessed by qRT-PCR and Western blot +/â either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Downstream intracellular signaling pathways were evaluated with Western blot and pre-treatment with specific pathway inhibitors. Gp120 immunostaining was performed on HIV/HCV coinfected liver biopsies.</p> <h3>Results</h3><p>X4 gp 120 significantly increased expression of alpha-smooth muscle actin (a-SMA) and collagen I in HSCs which was blocked by pre-incubation with either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Furthermore, X4 gp120 promoted Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and pretreatment with an ERK inhibitor attenuated HSC activation and collagen I expression. Sinusoidal staining for gp120 was evident in HIV/HCV coinfected livers.</p> <h3>Conclusions</h3><p>X4 HIV-1 gp120 is pro-fibrogenic through its interactions with CXCR4 on activated HSCs. The availability of small molecule inhibitors to CXCR4 make this a potential anti-fibrotic target in HIV/HCV coinfected patients.</p> </div
Selective Transmission of R5 HIV-1 over X4 HIV-1 at the Dendritic CellâT Cell Infectious Synapse Is Determined by the T Cell Activation State
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of T cell immunity against HIV. On the other hand, due to the susceptibility of DCs to HIV infection, virus replication is strongly enhanced in DCâT cell interaction via an immunological synapse formed during the antigen presentation process. When HIV-1 is isolated from individuals newly infected with the mixture of R5 and X4 variants, R5 is predominant, irrespective of the route of infection. Because the early massive HIV-1 replication occurs in activated T cells and such T-cell activation is induced by antigen presentation, we postulated that the selective expansion of R5 may largely occur at the level of DCâT cell interaction. Thus, the immunological synapse serves as an infectious synapse through which the virus can be disseminated in vivo. We used fluorescent recombinant X4 and R5 HIV-1 consisting of a common HIV-1 genome structure with distinct envelopes, which allowed us to discriminate the HIV-1 transmitted from DCs infected with the two virus mixtures to antigen-specific CD4+ T cells by flow cytometry. We clearly show that the selective expansion of R5 over X4 HIV-1 did occur, which was determined at an early entry step by the activation status of the CD4+ T cells receiving virus from DCs, but not by virus entry efficiency or productivity in DCs. Our results imply a promising strategy for the efficient control of HIV infection
- âŚ