47 research outputs found

    An Overview of B-1 Cells as Antigen-Presenting Cells

    Get PDF
    The role of B cells as antigen-presenting cells (APCs) has been extensively studied, mainly in relation to the activation of memory T cells. Considering the B cell subtypes, the role of B-1 cells as APCs is beginning to be explored. Initially, it was described that B-1 cells are activated preferentially by T-independent antigens. However, some reports demonstrated that these cells are also involved in a T-dependent response. The aim of this review is to summarize information about the ability of B-1 cells to play a role as APCs and to briefly discuss the role of the BCR and toll-like receptor signals in this process. Furthermore, some characteristics of B-1 cells, such as natural IgM production and phagocytic ability, could interfere in the participation of these cells in the onset of an adaptive response.FAPESPUniv Fed Sao Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, Sao Paulo, BrazilUniv Fed Sao Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, Sao Paulo, BrazilFAPESP: 2008/58561-0FAPESP: 2015/01986-2Web of Scienc

    Could a B-1 Cell Derived Phagocyte “Be One” of the Peritoneal Macrophages during LPS-Driven Inflammation?

    Get PDF
    The inflammatory response is driven by signals that recruit and elicit immune cells to areas of tissue damage or infection. The concept of a mononuclear phagocyte system postulates that monocytes circulating in the bloodstream are recruited to inflamed tissues where they give rise to macrophages. A recent publication demonstrated that the large increase in the macrophages observed during infection was the result of the multiplication of these cells rather than the recruitment of blood monocytes. We demonstrated previously that B-1 cells undergo differentiation to acquire a mononuclear phagocyte phenotype in vitro (B-1CDP), and we propose that B-1 cells could be an alternative origin for peritoneal macrophages. A number of recent studies that describe the phagocytic and microbicidal activity of B-1 cells in vitro and in vivo support this hypothesis. Based on these findings, we further investigated the differentiation of B-1 cells into phagocytes in vivo in response to LPS-induced inflammation. Therefore, we investigated the role of B-1 cells in the composition of the peritoneal macrophage population after LPS stimulation using osteopetrotic mice, BALB/Xid mice and the depletion of monocytes/macrophages by clodronate treatment. We show that peritoneal macrophages appear in op/op(−/−) mice after LPS stimulation and exhibit the same Ig gene rearrangement (VH11) that is often found in B-1 cells. These results strongly suggest that op/op(−/−) peritoneal “macrophages” are B-1CDP. Similarly, the LPS-induced increase in the macrophage population was observed even following monocyte/macrophage depletion by clodronate. After monocyte/macrophage depletion by clodronate, LPS-elicited macrophages were observed in BALB/Xid mice only following the transfer of B-1 cells. Based on these data, we confirmed that B-1 cell differentiation into phagocytes also occurs in vivo. In conclusion, the results strongly suggest that B-1 cell derived phagocytes are a component of the LPS-elicited peritoneal macrophage population

    Adjuvant Effect of Killed Propionibacterium acnes on Mouse Peritoneal B-1 Lymphocytes and Their Early Phagocyte Differentiation

    Get PDF
    B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses

    Role of microRNAs in B-Cell Compartment: Development, Proliferation and Hematological Diseases

    No full text
    B-cell development is a very orchestrated pathway that involves several molecules, such as transcription factors, cytokines, microRNAs, and also different cells. All these components maintain the ideal microenvironment and control B-cell differentiation. MicroRNAs are small non-coding RNAs that bind to target mRNA to control gene expression. These molecules could circulate in the body in a free form, protein-bounded, or encapsulated into extracellular vesicles, such as exosomes. The comprehension of the role of microRNAs in the B-cell development was possible based on microRNA profile of each B-cell stage and functional studies. Herein, we report the knowledge about microRNAs in the B-cell the differentiation, proliferation, and also in hematological malignancies

    Interleukin-10 secreted by B-1 cells modulates the phagocytic activity of murine macrophages in vitro

    Get PDF
    As demonstrated previously in our laboratory, B-1 cells migrate from the peritoneal cavity of mice and home to a distant site of inflammation to become macrophage-like cells. However, the influence that these cells might have on the kinetics and fate of the inflammatory process is not known. Considering that macrophages are pivotal in the inflammatory reaction, we decided to investigate the possible influence B-1 cells could have on macrophage activities in vitro. Our results show that peritoneal macrophages from Xid mice, a mouse strain deprived of B-1 cells, have higher phagocytic indexes for zymozan particles when compared with macrophages from wild-type mice. Moreover, macrophages from wild-type mice have a lower ability to release nitric oxide and hydrogen peroxide when compared with macrophages from Xid mice. Experiments using cocultures of B-1 cells and macrophages from Xid mice in transwell plates demonstrated that B-1 cells down-regulate macrophage activities. These observations also indicate that this phenomenon is not due to a physical interaction between these two cell populations. As B-1 cells are one of the main sources of interleukin (IL)-10, we demonstrate in this study that adherent peritoneal cells from Xid mice produce significantly less amounts of this cytokine in culture when compared with IL-10 production by cells from wild-type mice. When B-1 cells from IL-10 knock-out mice and macrophages from wild-type mice were cocultured in transwell plates, the phagocytic index of macrophages was not altered demonstrating that B-1 cells can influence the effector functions of macrophages in vitro via IL-10 secretion

    B-1 cells modulate oral tolerance in mice

    No full text
    Although the origin and functions of B-1 cells are controversial, they are considered as a cellular element of innate immunity due to their ability to produce natural autoantibodies of the IgM type. These antibodies are encoded by a relatively limited repertoire of V genes, and their resulting diversity is smaller than that produced by conventional B cells. B-1 cells constitute the larger fraction of B cells in the peritoneal cavity and migrate to non-specific inflammation sites. in addition, they contribute to the production of IgA antibodies in the intestinal lamina propria. It has been demonstrated that they participate in the induction and maintenance of peripheral tolerance. Herein, the participation of B-1 cells in inducing oral tolerance is evaluated. Unexpectedly, BALB/Xid mice, the animals deficient in B-1 cells, are not tolerized to OVA but instead are responsive to oral immunization. Conversely, BALB/c mice respond to oral tolerance to this antigen. We used these biological characteristics of these animals to investigate whether BA cells are involved in the induction of oral tolerance to OVA. Results show that B-1 cells from BALB/c mice, treated orally with OVA and adoptively transferred to BALB/Xid mice were able to suppress local hypersensitivity reaction and lymphoproliferative cellular response observed in BALB/.Xid mice. These data demonstrate that B-1 cells have regulatory properties and are involved in the induction of oral tolerance. (C) 2009 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo, Discipline Immunol, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilUniv São Paulo, Dept Chem Toxicol, Sch Pharmaceut Sci, São Paulo, BrazilUniversidade Federal de São Paulo, Discipline Immunol, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilFAPESP: 04/08506-1Web of Scienc
    corecore