14 research outputs found

    Thermodynamic entropy of a many body energy eigenstate

    Full text link
    It is argued that a typical many body energy eigenstate has a well defined thermodynamic entropy and that individual eigenstates possess thermodynamic characteristics analogous to those of generic isolated systems. We examine large systems with eigenstate energies equivalent to finite temperatures. When quasi-static evolution of a system is adiabatic (in the quantum mechanical sense), two coupled subsystems can transfer heat from one subsystem to another yet remain in an energy eigenstate. To explicitly construct the entropy from the wave function, degrees of freedom are divided into two unequal parts. It is argued that the entanglement entropy between these two subsystems is the thermodynamic entropy per degree of freedom for the smaller subsystem. This is done by tracing over the larger subsystem to obtain a density matrix, and calculating the diagonal and off-diagonal contributions to the entanglement entropy.Comment: 18 page

    A generalized quantum microcanonical ensemble

    Full text link
    We discuss a generalized quantum microcanonical ensemble. It describes isolated systems that are not necessarily in an eigenstate of the Hamilton operator. Statistical averages are obtained by a combination of a time average and a maximum entropy argument to resolve the lack of knowledge about initial conditions. As a result, statistical averages of linear observables coincide with values obtained in the canonical ensemble. Non-canonical averages can be obtained by taking into account conserved quantities which are non-linear functions of the microstate.Comment: improved version, new titl

    Entropy in general physical theories

    Get PDF
    Information plays an important role in our understanding of the physical world. We hence propose an entropic measure of information for any physical theory that admits systems, states and measurements. In the quantum and classical world, our measure reduces to the von Neumann and Shannon entropy respectively. It can even be used in a quantum or classical setting where we are only allowed to perform a limited set of operations. In a world that admits superstrong correlations in the form of non-local boxes, our measure can be used to analyze protocols such as superstrong random access encodings and the violation of `information causality'. However, we also show that in such a world no entropic measure can exhibit all properties we commonly accept in a quantum setting. For example, there exists no`reasonable' measure of conditional entropy that is subadditive. Finally, we prove a coding theorem for some theories that is analogous to the quantum and classical setting, providing us with an appealing operational interpretation.Comment: 20 pages, revtex, 7 figures, v2: Coding theorem revised, published versio

    Information Causality as a Physical Principle

    Full text link
    Quantum physics exhibits remarkable distinguishing characteristics. For example, it gives only probabilistic predictions (non-determinism) and does not allow copying of unknown state (no-cloning). Quantum correlations may be stronger than any classical ones, nevertheless information cannot be transmitted faster than light (no-signaling). However, all these features do not single out quantum physics. A broad class of theories exist which share such traits with quantum mechanics, while they allow even stronger than quantum correlations. Here, we introduce the principle of Information Causality. It states that information that Bob can gain about a previously completely unknown to him data set of Alice, by using all his local resources (which may be correlated with her resources) and a classical communication from her, is bounded by the information volume of the communication. In other words, if Alice communicates m bits to Bob, the total information access that Bob gains to her data is not greater than m. For m=0, Information Causality reduces to the standard no-signaling principle. We show that this new principle is respected both in classical and quantum physics, whereas it is violated by all the no-signaling correlations which are stronger that the strongest quantum correlations. Maximally strong no-signalling correlations would allow Bob access to any m bit subset of the whole data set held by Alice. If only one bit is sent by Alice (m=1), this is tantamount to Bob being able to access the value of any single bit of Alice's data (but of course not all of them). We suggest that Information Causality, a generalization of no-signaling, might be one of the foundational properties of Nature.Comment: This version of the paper is as close to the published one as legally possibl

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore