31 research outputs found

    Augmented Reality Future Step Visualization for Robust Surgical Telementoring

    Get PDF
    Introduction Surgical telementoring connects expert mentors with trainees performing urgent care in austere environments. However, such environments impose unreliable network quality, with significant latency and low bandwidth. We have developed an augmented reality telementoring system that includes future step visualization of the medical procedure. Pregenerated video instructions of the procedure are dynamically overlaid onto the trainee's view of the operating field when the network connection with a mentor is unreliable. Methods Our future step visualization uses a tablet suspended above the patient's body, through which the trainee views the operating field. Before trainee use, an expert records a “future library” of step-by-step video footage of the operation. Videos are displayed to the trainee as semitransparent graphical overlays. We conducted a study where participants completed a cricothyroidotomy under telementored guidance. Participants used one of two telementoring conditions: conventional telestrator or our system with future step visualization. During the operation, the connection between trainee and mentor was bandwidth throttled. Recorded metrics were idle time ratio, recall error, and task performance. Results Participants in the future step visualization condition had 48% smaller idle time ratio (14.5% vs. 27.9%, P < 0.001), 26% less recall error (119 vs. 161, P = 0.042), and 10% higher task performance scores (rater 1 = 90.83 vs. 81.88, P = 0.008; rater 2 = 88.54 vs. 79.17, P = 0.042) than participants in the telestrator condition. Conclusions Future step visualization in surgical telementoring is an important fallback mechanism when trainee/mentor network connection is poor, and it is a key step towards semiautonomous and then completely mentor-free medical assistance systems

    Childbearing intentions in a low fertility context: the case of Romania

    Get PDF
    This paper applies the Theory of Planned Behaviour (TPB) to find out the predictors of fertility intentions in Romania, a low-fertility country. We analyse how attitudes, subjective norms and perceived behavioural control relate to the intention to have a child among childless individuals and one-child parents. Principal axis factor analysis confirms which items proposed by the Generation and Gender Survey (GGS 2005) act as valid and reliable measures of the suggested theoretical socio-psychological factors. Four parity-specific logistic regression models are applied to evaluate the relationship between the socio-psychological factors and childbearing intentions. Social pressure emerges as the most important aspect in fertility decision-making among childless individuals and one-child parents, and positive attitudes towards childbearing are a strong component in planning for a child. This paper also underlines the importance of the region-specific factors when studying childbearing intentions: planning for the second child significantly differs among the development regions, representing the cultural and socio-economic divisions of the Romanian territory

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Interactive Point-Based Modeling from Dense Color and Sparse Depth © The Eurographics Association 2004.

    No full text
    We are developing a system for interactive modeling of real world scenes. The acquisition device consists of a video camera enhanced with an attached laser system. As the operator sweeps the scene, the device acquires dense color and sparse depth frames that are registered and merged into a point-based model. The evolving model is rendered continually to provide immediate operator feedback. This paper discusses interactive modeling of structured scenes, which consist of large smooth surfaces. We have built an acquisition device that captures 7x7 evenly spaced depth samples per frame. The samples are grouped into patches that are approximated with polynomial surfaces. Consecutive frames are registered by computing a motion that aligns their depth and color samples. The scene is modeled as a collection of depth images created on demand during scanning. Resampling errors are avoided by using offsets to record accurately the positions of the acquired samples. The interactive modeling pipeline runs at five frames per second. Categories and Subject Descriptors (according to ACM CCS): I.3.3. [Computer Graphics]—Three-Dimensional Graphics an

    Hand Gesture and Mathematics Learning: Lessons From an Avatar.

    No full text
    A beneficial effect of gesture on learning has been demonstrated in multiple domains, including mathematics, science, and foreign language vocabulary. However, because gesture is known to co-vary with other non-verbal behaviors, including eye gaze and prosody along with face, lip, and body movements, it is possible the beneficial effect of gesture is instead attributable to these other behaviors. We used a computer-generated animated pedagogical agent to control both verbal and non-verbal behavior. Children viewed lessons on mathematical equivalence in which an avatar either gestured or did not gesture, while eye gaze, head position, and lip movements remained identical across gesture conditions. Children who observed the gesturing avatar learned more, and they solved problems more quickly. Moreover, those children who learned were more likely to transfer and generalize their knowledge. These findings provide converging evidence that gesture facilitates math learning, and they reveal the potential for using technology to study non-verbal behavior in controlled experiments
    corecore