491 research outputs found

    Pre-perihelion Monitoring of Interstellar Comet 2I/Borisov

    Full text link
    The discovery of interstellar comet 2I/Borisov offered the unique opportunity to obtain a detailed analysis of an object coming from another planetary system, and leaving behind material in our interplanetary space. We continuously observed 2I/Borisov between October 3 and December 13, 2019 using the 1.52-m Telescopio Carlos S\'{a}nchez equipped with MuSCAT2 instrument, and the 2.54-m Isaac Newton Telescope with Wide Field Camera. We characterize its morphology and spectro-photometric features using the data gathered during this extended campaign. Simultaneous imaging in four bands (gg, rr, ii, and zsz_s) reveals a homogeneous composition and a reddish hue, resembling Solar System comets, and as well a diffuse profile exhibiting familiar cometary traits. We discern a stationary trend fluctuating around a constant activity level throughout October and November 2019. Subsequently, a reduction in activity is observed in December. Dust production and mass loss calculations indicate approximately an average of 4 kg/s before perihelion, while after perihelion the net mass loss is about 0.6 kg/s. Our simulations indicate the most probable size of coma dust particles should be in the range 200-250 nm, and the terminal speed around 300 m/s. The spectrum acquired with the 4.2-m William Herschel Telescope shows the presence of a strong CN line for which we find a gas production rate of 1.2×1024 s11.2 \times 10^{24}~s^{-1}. We also detected NH2_2 and OI bands. The ratio between NH2_2 and CN productions is log(NH2/CN)=0.2\log (NH_2/CN) =-0.2. Overall, this observing campaign provides a new understanding of 2I/Borisov's unique characteristics and activity patterns.Comment: accepted to MNRAS on 12th Feb 202

    Discovery and physical characterization as the first response to a potential asteroid collision: The case of 2023 DZ2

    Full text link
    Near-Earth asteroids (NEAs) that may evolve into impactors deserve detailed threat assessment studies. Early physical characterization of a would-be impactor may help in optimizing impact mitigation plans. We first detected NEA 2023~DZ2_{2} on 27--February--2023. After that, it was found to have a Minimum Orbit Intersection Distance (MOID) with Earth of 0.00005~au as well as an unusually high initial probability of becoming a near-term (in 2026) impactor. We aim to perform a rapid but consistent dynamical and physical characterization of 2023~DZ2_{2} as an example of a key response to mitigate the consequences of a potential impact. We use a multi-pronged approach, drawing from various methods (observational/computational) and techniques (spectroscopy/photometry from multiple instruments), and bringing the data together to perform a rapid and robust threat assessment.} The visible reflectance spectrum of 2023~DZ2_{2} is consistent with that of an X-type asteroid. Light curves of this object obtained on two different nights give a rotation period PP=6.2743±\pm0.0005 min with an amplitude AA=0.57±\pm0.14~mag. We confirm that although its MOID is among the smallest known, 2023~DZ2_{2} will not impact Earth in the foreseeable future as a result of secular near-resonant behaviour. Our investigation shows that coordinated observation and interpretation of disparate data provides a robust approach from discovery to threat assessment when a virtual impactor is identified. We prove that critical information can be obtained within a few days after the announcement of the potential impactor.Comment: Accepted for publication in Astronomy and Astrophysics, 15 page

    The AO Spine Thoracolumbar Injury Classification System and Treatment Algorithm in Decision Making for Thoracolumbar Burst Fractures Without Neurologic Deficit

    Get PDF
    STUDY DESIGN: Prospective Observational Study. OBJECTIVE: To determine the alignment of the AO Spine Thoracolumbar Injury Classification system and treatment algorithm with contemporary surgical decision making. METHODS: 183 cases of thoracolumbar burst fractures were reviewed by 22 AO Spine Knowledge Forum Trauma experts. These experienced clinicians classified the fracture morphology, integrity of the posterior ligamentous complex and degree of comminution. Management recommendations were collected. RESULTS: There was a statistically significant stepwise increase in rates of operative management with escalating category of injury (P \u3c .001). An excellent correlation existed between recommended expert management and the actual treatment of each injury category: A0/A1/A2 (OR 1.09, 95% CI 0.70-1.69, P = .71), A3/4 (OR 1.62, 95% CI 0.98-2.66, P = .58) and B1/B2/C (1.00, 95% CI 0.87-1.14, P = .99). Thoracolumbar A4 fractures were more likely to be surgically stabilized than A3 fractures (68.2% vs 30.9%, P \u3c .001). A modifier indicating indeterminate ligamentous injury increased the rate of operative management when comparing type B and C injuries to type A3/A4 injuries (OR 39.19, 95% CI 20.84-73.69, P \u3c .01 vs OR 27.72, 95% CI 14.68-52.33, P \u3c .01). CONCLUSIONS: The AO Spine Thoracolumbar Injury Classification system introduces fracture morphology in a rational and hierarchical manner of escalating severity. Thoracolumbar A4 complete burst fractures were more likely to be operatively managed than A3 fractures. Flexion-distraction type B injuries and translational type C injuries were much more likely to have surgery recommended than type A fractures regardless of the M1 modifier. A suspected posterior ligamentous injury increased the likelihood of surgeons favoring surgical stabilization

    Expert Opinion, Real-World Classification, and Decision-Making in Thoracolumbar Burst Fractures Without Neurologic Deficits?

    Get PDF
    STUDY DESIGN: Retrospective analysis of prospectively collected data. OBJECTIVES: To compare decision-making between an expert panel and real-world spine surgeons in thoracolumbar burst fractures (TLBFs) without neurological deficits and analyze which factors influence surgical decision-making. METHODS: This study is a sub-analysis of a prospective observational study in TL fractures. Twenty two experts were asked to review 183 CT scans and recommend treatment for each fracture. The expert recommendation was based on radiographic review. RESULTS: Overall agreement between the expert panel and real-world surgeons regarding surgery was 63.2%. In 36.8% of cases, the expert panel recommended surgery that was not performed in real-world scenarios. Conversely, in cases where the expert panel recommended non-surgical treatment, only 38.6% received non-surgical treatment, while 61.4% underwent surgery. A separate analysis of A3 and A4 fractures revealed that expert panel recommended surgery for 30% of A3 injuries and 68% of A4 injuries. However, 61% of patients with both A3 and A4 fractures received surgery in the real world. Multivariate analysis demonstrated that a 1% increase in certainty of PLC injury led to a 4% increase in surgery recommendation among the expert panel, while a .2% increase in the likelihood of receiving surgery in the real world. CONCLUSION: Surgical decision-making varied between the expert panel and real-world treating surgeons. Differences appear to be less evident in A3/A4 burst fractures making this specific group of fractures a real challenge independent of the level of expertise

    Interobserver Reliability in the Classification of Thoracolumbar Fractures Using the AO Spine TL Injury Classification System Among 22 Clinical Experts in Spine Trauma Care

    Get PDF
    STUDY DESIGN: Reliability study utilizing 183 injury CT scans by 22 spine trauma experts with assessment of radiographic features, classification of injuries and treatment recommendations. OBJECTIVES: To assess the reliability of the AOSpine TL Injury Classification System (TLICS) including the categories within the classification and the M1 modifier. METHODS: Kappa and Intraclass correlation coefficients were produced. Associations of various imaging characteristics (comminution, PLC status) and treatment recommendations were analyzed through regression analysis. Multivariable logistic regression modeling was used for making predictive algorithms. RESULTS: Reliability of the AO Spine TLICS at differentiating A3 and A4 injuries (N = 71) (K = .466; 95% CI .458 – .474; P \u3c .001) demonstrated moderate agreement. Similarly, the average intraclass correlation coefficient (ICC) amongst A3 and A4 injuries was excellent (ICC = .934; 95% CI .919 – .947; P \u3c .001) and the ICC between individual measures was moderate (ICC = .403; 95% CI .351 – .461; P \u3c .001). The overall agreement on the utilization of the M1 modifier amongst A3 and A4 injuries was fair (K = .161; 95% CI .151 – .171; P \u3c .001). The ICC for PLC status in A3 and A4 injuries averaged across all measures was excellent (ICC = .936; 95% CI .922 – .949; P \u3c .001). The M1 modifier suggests respondents are nearly 40% more confident that the PLC is injured amongst all injuries. The M1 modifier was employed at a higher frequency as injuries were classified higher in the classification system. CONCLUSIONS: The reliability of surgeons differentiating between A3 and A4 injuries in the AOSpine TLICS is substantial and the utilization of the M1 modifier occurs more frequently with higher grades in the system

    Predictive Algorithm for Surgery Recommendation in Thoracolumbar Burst Fractures Without Neurological Deficits

    Get PDF
    STUDY DESIGN: Predictive algorithm via decision tree. OBJECTIVES: Artificial intelligence (AI) remain an emerging field and have not previously been used to guide therapeutic decision making in thoracolumbar burst fractures. Building such models may reduce the variability in treatment recommendations. The goal of this study was to build a mathematical prediction rule based upon radiographic variables to guide treatment decisions. METHODS: Twenty-two surgeons from the AO Knowledge Forum Trauma reviewed 183 cases from the Spine TL A3/A4 prospective study (classification, degree of certainty of posterior ligamentous complex (PLC) injury, use of M1 modifier, degree of comminution, treatment recommendation). Reviewers\u27 regions were classified as Europe, North/South America and Asia. Classification and regression trees were used to create models that would predict the treatment recommendation based upon radiographic variables. We applied the decision tree model which accounts for the possibility of non-normal distributions of data. Cross-validation technique as used to validate the multivariable analyses. RESULTS: The accuracy of the model was excellent at 82.4%. Variables included in the algorithm were certainty of PLC injury (%), degree of comminution (%), the use of M1 modifier and geographical regions. The algorithm showed that if a patient has a certainty of PLC injury over 57.5%, then there is a 97.0% chance of receiving surgery. If certainty of PLC injury was low and comminution was above 37.5%, a patient had 74.2% chance of receiving surgery in Europe and Asia vs 22.7% chance in North/South America. Throughout the algorithm, the use of the M1 modifier increased the probability of receiving surgery by 21.4% on average. CONCLUSION: This study presents a predictive analytic algorithm to guide decision-making in the treatment of thoracolumbar burst fractures without neurological deficits. PLC injury assessment over 57.5% was highly predictive of receiving surgery (97.0%). A high degree of comminution resulted in a higher chance of receiving surgery in Europe or Asia vs North/South America. Future studies could include clinical and other variables to enhance predictive ability or use machine learning for outcomes prediction in thoracolumbar burst fractures

    Understanding Decision Making as It Influences Treatment in Thoracolumbar Burst Fractures Without Neurological Deficit: Conceptual Framework and Methodology

    Get PDF
    STUDY DESIGN: This paper presents a description of a conceptual framework and methodology that is applicable to the manuscripts that comprise this focus issue. OBJECTIVES: Our goal is to present a conceptual framework which is relied upon to better understand the processes through which surgeons make therapeutic decisions around how to treat thoracolumbar burst fractures (TL) fractures. METHODS: We will describe the methodology used in the AO Spine TL A3/4 Study prospective observational study and how the radiographs collected for this study were utilized to study the relationships between various variables that factor into surgeon decision making. RESULTS: With 22 expert spine trauma surgeons analyzing the acute CT scans of 183 patients with TL fractures we were able to perform pairwise analyses, look at reliability and correlations between responses and develop frequency tables, and regression models to assess the relationships and interactions between variables. We also used machine learning to develop decision trees. CONCLUSIONS: This paper outlines the overall methodological elements that are common to the subsequent papers in this focus issue

    Apophis planetary defense campaign

    Get PDF
    We describe results of a planetary defense exercise conducted during the close approach to Earth by the near-Earth asteroid (99942) Apophis during 2020 December–2021 March. The planetary defense community has been conducting observational campaigns since 2017 to test the operational readiness of the global planetary defense capabilities. These community-led global exercises were carried out with the support of NASA's Planetary Defense Coordination Office and the International Asteroid Warning Network. The Apophis campaign is the third in our series of planetary defense exercises. The goal of this campaign was to recover, track, and characterize Apophis as a potential impactor to exercise the planetary defense system including observations, hypothetical risk assessment and risk prediction, and hazard communication. Based on the campaign results, we present lessons learned about our ability to observe and model a potential impactor. Data products derived from astrometric observations were available for inclusion in our risk assessment model almost immediately, allowing real-time updates to the impact probability calculation and possible impact locations. An early NEOWISE diameter measurement provided a significant improvement in the uncertainty on the range of hypothetical impact outcomes. The availability of different characterization methods such as photometry, spectroscopy, and radar provided robustness to our ability to assess the potential impact risk

    Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study

    Get PDF
    BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P < 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P < 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223
    corecore