266 research outputs found

    Peristaltic Transport of a Couple Stress Fluid: Some Applications to Hemodynamics

    Full text link
    The present paper deals with a theoretical investigation of the peristaltic transport of a couple stress fluid in a porous channel. The study is motivated towards the physiological flow of blood in the micro-circulatory system, by taking account of the particle size effect. The velocity, pressure gradient, stream function and frictional force of blood are investigated, when the Reynolds number is small and the wavelength is large, by using appropriate analytical and numerical methods. Effects of different physical parameters reflecting porosity, Darcy number, couple stress parameter as well as amplitude ratio on velocity profiles, pumping action and frictional force, streamlines pattern and trapping of blood are studied with particular emphasis. The computational results are presented in graphical form. The results are found to be in good agreement with those of Shapiro et. al \cite{r25} that was carried out for a non-porous channel in the absence of couple stress effect. The present study puts forward an important observation that for peristaltic transport of a couple stress fluid during free pumping when the couple stress effect of the fluid/Darcy permeability of the medium, flow reversal can be controlled to a considerable extent. Also by reducing the permeability it is possible to avoid the occurrence of trapping phenomenon

    Structural effects in UO2 thin films irradiated with fission-energy Xe ions

    Get PDF
    Uranium dioxide thin films have been successfully grown on LSAT (Al10La3O51Sr14Ta7) substrates by reactive magnetron sputtering. Irradiation by 92 MeV 129Xe23+ ions to simulate fission damage that occurs within nuclear fuels caused microstructural and crystallographic changes. Initially flat and continuous thin films were produced by magnetron sputtering with a root mean square roughness of 0.35 nm determined by AFM. After irradiation, this roughness increased to 60–70 nm, with the films developing discrete microstructural features: small grains (∼3 μm), along with larger circular (up to 40 μm) and linear formations with non-uniform composition according to the SEM, AFM and EDX results. The irradiation caused significant restructuring of the UO2 films that was manifested in significant film-substrate mixing, observed through EDX analysis. Diffusion of Al from the substrate into the film in unirradiated samples was also observed

    XPS Study of Ion Irradiated and Unirradiated UO2 Thin Films

    Get PDF
    XPS determination of the oxygen coefficient k O =2+x and ionic (U 4+ , U 5+ and U 6+ ) composition of oxides UO 2+x formed on the surfaces of differently oriented (hkl) planes of thin UO 2 films on LSAT (Al 10 La 3 O 51 Sr 14 Ta 7 ) and YSZ (yttria-stabilized zirconia) substrates was performed. The U 4f and O 1s core-electron peak intensities as well as the U 5f relative intensity before and after the 129 Xe 23+ and 238 U 31+ irradiations were employed. It was found that the presence of uranium dioxide film in air results in formation of oxide UO 2+x on the surface with mean oxygen coefficients k O in the range 2.07-2.11 on LSAT and 2.17-2.23 on YSZ substrates. These oxygen coefficients depend on the substrate and weakly on the crystallographic orientation. On the basis of the spectral parameters it was established that uranium dioxide films AP2,3 on the LSAT substrates have the smallest k O values, and from the XRD and EBSD results it follows that these samples have a regular monocrystalline structure. The XRD and EBSD results indicate that samples AP5-7 on the YSZ substrates have monocrystalline structure, however, they have the highest k O values. The observed difference in the k O values, probably, caused by the different nature of the substrates: the YSZ substrates provide 6.4% compressive strain, whereas (001) LSAT substrates result only in 0.03% tensile strain in the UO 2 films. 129 Xe 23+ irradiation (92 MeV, 4.8 × 10 15 ions/cm 2 ) of uranium dioxide films on the LSAT substrates was shown to destroy both long range ordering and uranium close environment, which results in increase of uranium oxidation state and regrouping of oxygen ions in uranium close environment. 238 U 31+ (110 MeV, 5 × 10 10 , 5 × 10 11 , 5 × 10 12 ions/cm 2 ) irradiations of uranium dioxide films on the YSZ substrates were shown to form the lattice damage only with partial destruction of the long range ordering

    Structural effects in UO2 thin films irradiated with U ions

    Get PDF
    This work presents the results of a detailed structural characterisation of irradiated and unirradiated single crystal thin films of UO2. Thin films of UO2 were produced by reactive magnetron sputtering onto (0 0 1), (1 1 0) and (1 1 1) single crystal yttria-stabilised zirconia (YSZ) substrates. Half of the samples were irradiated with 110 MeV 238U31+ ions to fluences of 5 × 1010, 5 × 1011 and 5 × 1012 ions/cm2 to induce radiation damage, with the remainder kept for reference measurements. It was observed that as-produced UO2 films adopted the crystallographic orientation of their YSZ substrates. The irradiation fluences used in this study however, were not sufficient to cause any permanent change in the crystalline nature of UO2. It has been demonstrated that the effect of epitaxial re-crystallisation of the induced radiation damage can be quantified in terms of kernel average misorientation (KAM) and different crystallographic orientations of UO2 respond differently to ion irradiation

    A collagen IV-derived peptide disrupts α5β1 integrin and potentiates Ang2/Tie2 signaling

    Get PDF
    The angiopoietin (Ang)/Tie2 signaling pathway is essential for maintaining vascular homeostasis, and its dysregulation is associated with several diseases. Interactions between Tie2 and α5 β1 integrin have emerged as part of this control; however, the mechanism is incompletely understood. AXT107, a collagen IV–derived peptide, has strong antipermeability activity and has enabled the elucidation of this previously undetermined mechanism. Previously, AXT107 was shown to inhibit VEGFR2 and other growth factor signaling via receptor tyrosine kinase association with specific integrins. AXT107 disrupts α5 β1 and stimulates the relocation of Tie2 and α5 to cell junctions. In the presence of Ang2 and AXT107, junctional Tie2 is activated, downstream survival signals are upregulated, F-actin is rearranged to strengthen junctions, and, as a result, endothelial junctional permeability is reduced. These data suggest that α5 β1 sequesters Tie2 in nonjunctional locations in endothelial cell membranes and that AXT107-induced disruption of α5 β1 promotes clustering of Tie2 at junctions and converts Ang2 into a strong agonist, similar to responses observed when Ang1 levels greatly exceed those of Ang2. The potentiation of Tie2 activation by Ang2 even extended to mouse models in which AXT107 induced Tie2 phosphorylation in a model of hypoxia and inhibited vascular leakage in an Ang2-overexpression transgenic model and an LPS-induced inflammation model. Because Ang2 levels are very high in ischemic diseases, such as diabetic macular edema, neovascular age-related macular degeneration, uveitis, and cancer, targeting α5 β1 with AXT107 provides a potentially more effective approach to treat these diseases.Fil: Mirando, Adam C.. University Johns Hopkins; Estados UnidosFil: Shen, Jikui. University Johns Hopkins; Estados UnidosFil: Silva, Raquel Lima E.. University Johns Hopkins; Estados UnidosFil: Chu, Zenny. University Johns Hopkins; Estados UnidosFil: Sass, Nicholas C.. University Johns Hopkins; Estados UnidosFil: Lorenc, Valeria Erika. University Johns Hopkins; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Green, Jordan J.. University Johns Hopkins; Estados Unidos. AsclepiX Therapeutics; Estados UnidosFil: Campochiaro, Peter A.. University Johns Hopkins; Estados UnidosFil: Popel, Aleksander S.. University Johns Hopkins; Estados UnidosFil: Pandey, Niranjan B.. University Johns Hopkins; Estados Unidos. AsclepiX Therapeutics; Estados Unido

    XPS Study of Ion Irradiated and Unirradiated UO2 Thin Films.

    Get PDF
    XPS determination of the oxygen coefficient kO = 2 + x and ionic (U(4+), U(5+), and U(6+)) composition of oxides UO2+x formed on the surfaces of differently oriented (hkl) planes of thin UO2 films on LSAT (Al10La3O51Sr14Ta7) and YSZ (yttria-stabilized zirconia) substrates was performed. The U 4f and O 1s core-electron peak intensities as well as the U 5f relative intensity before and after the (129)Xe(23+) and (238)U(31+) irradiations were employed. It was found that the presence of uranium dioxide film in air results in formation of oxide UO2+x on the surface with mean oxygen coefficients kO in the range 2.07-2.11 on LSAT and 2.17-2.23 on YSZ substrates. These oxygen coefficients depend on the substrate and weakly on the crystallographic orientation. On the basis of the spectral parameters it was established that uranium dioxide films AP2,3 on the LSAT substrates have the smallest kO values, and from the XRD and EBSD results it follows that these samples have a regular monocrystalline structure. The XRD and EBSD results indicate that samples AP5-7 on the YSZ substrates have monocrystalline structure; however, they have the highest kO values. The observed difference in the kO values was probably caused by the different nature of the substrates: the YSZ substrates provide 6.4% compressive strain, whereas (001) LSAT substrates result only in 0.03% tensile strain in the UO2 films. (129)Xe(23+) irradiation (92 MeV, 4.8 × 10(15) ions/cm(2)) of uranium dioxide films on the LSAT substrates was shown to destroy both long-range ordering and uranium close environment, which results in an increase of uranium oxidation state and regrouping of oxygen ions in uranium close environment. (238)U(31+) (110 MeV, 5 × 10(10), 5 × 10(11), 5 × 10(12) ions/cm(2)) irradiations of uranium dioxide films on the YSZ substrates were shown to form the lattice damage only with partial destruction of the long-range ordering.The irradiation experiment was performed at the Grand Accelé rateur National d ́ ’Ions Lourds (GANIL) Caen, France, and supported by the French Network EMIR. The support in planning and execution of the experiment by the CIMAPCIRIL and the GANIL staff, especially I. Monnet, C. Grygiel, T. Madi, and F. Durantel, is much appreciated. The work was supported by RFBR grant no. 16-03-00914-a and partially supported by M.V. Lomonosov Moscow State University Program of Development. A.J.P. acknowledges funding from the UK EPSRC (grant EP/I036400/1) and Radioactive Waste Management Ltd. (formerly the Radioactive Waste Management Directorate of the UK Nuclear Decommissioning Authority, contract NPO004411A-EPS02), a maintenance grant from the Russian Foundation for Basic Research (projects 13-03-90916) and CSAR bursary. Thanks are given to A.M. Adamska, G.I. Lampronti, V.A. Lebedev, P.G. Martin, L. Payne, and A.A. Shiryaev for their help in characterization of the samples

    Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems

    Get PDF
    Author manuscript; available in PMC 2012 March 1.We investigate the biophysical characteristics of healthy human red blood cells (RBCs) traversing microfluidic channels with cross-sectional areas as small as 2.7 × 3 μm. We combine single RBC optical tweezers and flow experiments with corresponding simulations based on dissipative particle dynamics (DPD), and upon validation of the DPD model, predictive simulations and companion experiments are performed in order to quantify cell deformation and pressure–velocity relationships for different channel sizes and physiologically relevant temperatures. We discuss conditions associated with the shape transitions of RBCs along with the relative effects of membrane and cytosol viscosity, plasma environments, and geometry on flow through microfluidic systems at physiological temperatures. In particular, we identify a cross-sectional area threshold below which the RBC membrane properties begin to dominate its flow behavior at room temperature; at physiological temperatures this effect is less profound.Singapore-MIT Alliance for Research and TechnologyUnited States. National Institutes of Health (National Heart, Lung, and Blood Institute Award R01HL094270
    corecore