10,567 research outputs found

    Mobility of Edge Dislocations in the Basal‐Slip System of Zinc

    Get PDF
    This paper presents the results of measurements of the velocities of 〈1210〉 (0001) edge dislocations in zinc as a function of applied shear stress. All tests were conducted at room temperature on 99.999% pure zinc monocrystals. Dislocations were revealed by means of the Berg‐Barrett x‐ray technique. Stress pulses of microsecond duration were applied to the test specimens by means of a torsion testing machine. Applied resolved shear stresses ranged from 0 to 17.2×10^6 dyn∕cm^2 and measured dislocation velocities ranged from 40–700 cm∕sec. The results of this study indicate that the velocity of edge dislocations in the basal slip system of zinc is linearly proportional to the applied resolved shear stress. These results are analyzed in terms of the phonon drag theory. Agreement between this theory and the results reported here is quite good

    Disagreement between correlations of quantum mechanics and stochastic electrodynamics in the damped parametric oscillator

    Get PDF
    Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are calculated for quantum mechanics and stochastic electrodynamics (SED), a semiclassical theory. The two theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system's nonlinear coupling constant and those of SED being linear in the same constant. In particular, differences between the two theories are present in at least a mesoscopic regime. They also exist when realistic damping is included. Such differences illustrate distinctions between quantum mechanics and a hidden variable theory for continuous variables.Comment: accepted by PR

    Are analysts' loss functions asymmetric?

    Get PDF
    Recent research by Gu and Wu (2003) and Basu and Markov (2004) suggests that the well-known optimism bias in analysts? earnings forecasts is attributable to analysts minimizing symmetric, linear loss functions when the distribution of forecast errors is skewed. An alternative explanation for forecast bias is that analysts have asymmetric loss functions. We test this alternative explanation. Theory predicts that if loss functions are asymmetric then forecast error bias depends on forecast error variance, but not necessarily on forecast error skewness. Our results confirm that the ex ante forecast error variance is a significant determinant of forecast error and that, after controlling for variance, the sign of the coefficient on forecast error skewness is opposite to that found in prior research. Our results are consistent with financial analysts having asymmetric loss functions. Further analysis reveals that forecast bias varies systematically across style portfolios formed on book-to-price and market capitalization. These firm characteristics capture systematic variation in forecast error variance and skewness. Within style portfolios, forecast error variance continues to play a dominant role in explaining forecast error.

    Are analysts? loss functions asymmetric?

    Get PDF
    Recent research by Gu and Wu (2003) and Basu and Markov (2004) suggests that the well-known optimism bias in analysts? earnings forecasts is attributable to analysts minimizing symmetric, linear loss functions when the distribution of forecast errors is skewed. An alternative explanation for forecast bias is that analysts have asymmetric loss functions. We test this alternative explanation. Theory predicts that if loss functions are asymmetric then forecast error bias depends on forecast error variance, but not necessarily on forecast error skewness. Our results confirm that the ex ante forecast error variance is a significant determinant of forecast error and that, after controlling for variance, the sign of the coefficient on forecast error skewness is opposite to that found in prior research. Our results are consistent with financial analysts having asymmetric loss functions. Further analysis reveals that forecast bias varies systematically across style portfolios formed on book-to-price and market capitalization. These firm characteristics capture systematic variation in forecast error variance and skewness. Within style portfolios, forecast error variance continues to play a dominant role in explaining forecast error.

    Hot forming of silicon sheet, silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    Get PDF
    The hot workability of polycrystalline silicon was studied. Uniaxail stress-strain curves are given for strain rates in the range of .0001 to .1/sec and temperatures from 1100 to 1380 C. At the highest strain rates at 1380 C axial strains in excess of 20% were easily obtainable without cracking. After deformations of 36%, recrystallization was completed within 0.1 hr at 1380 C. When the recrystallization was complete, there was still a small volume fraction of unrecyrstallized material which appeared very stable and may degrade the electronic properties of the bulk materials. Texture measurements showed that the as-produced vapor deposited polycrystalline rods have a 110 fiber texture with the 110 direction parallel to the growth direction and no preferred orientation about this axis. Upon axial compression perpendicular to the growth direction, the former 110 fiber axis changed to 111 and the compression axis became 110 . Recrystallization changed the texture to 110 along the former fiber axis and to 100 along the compression axis

    Hodgkin's disease: subsequent primary cancers in relation to treatment.

    Get PDF
    A consecutive series of 2,999 patients, diagnosed with Hodgkin's disease (HD) between 1950 and 1979, was assembled from the records of the Birmingham and West Midlands Cancer Registry and followed to the end of 1984. Cohort analyses of subsequent primary cancers among 1,976 patients, surviving one or more years (mean follow-up 6.7 person-years), were carried out in relation to overall treatment by radiotherapy (RT), chemotherapy (CT) or both modalities (CT + RT). Over all sites a 50% increase in risk, relative to the West Midlands population, was found [observed (O) = 65; relative risk (RR) = 1.5; P less than 0.01]. Among patients treated by CT (with or without RT) a significant increase in acute and non-lymphocytic leukaemias was found (O = 6; RR = 30.0; P less than 0.001). The excess risk was of the order of 1 per 1000 patient-years and the cumulative risk was 1.2%. Among solid tumours increased risks, which might be attributable to RT, occurred in the lung (O = 15; RR = 1.6; P less than 0.05), breast (O = 9; RR = 2.2; P less than 0.05) and bone (O = 2; RR = 20.0; P less than 0.01). The excess of skin cancers (O = 13; RR = 2.9; P less than 0.01) occurred mainly within 10 years of treatment with CT. The follow-up period is still insufficient to determine the long-term effect on the incidence of solid tumours with long latent periods from multiple-agent CT which became more frequently used in the early 1970s. A sub-set of these data was analysed over all treatments and the results were contributed to an international study co-ordinated by the International Agency for Research on Cancer, Lyon

    Mobility of Basal Dislocations in Zinc

    Get PDF
    This paper reports the results of an experimental study in which basal dislocation velocities were measured in zinc as a function of stress, temperature and dislocation orientation. The velocities were measured using the direct or Gilman-Johnston technique in which the individual dislocations themselves are observed. Tests were performed on 99.999% purity monocrystals. The applied resolved shear stress ranged from 0 to about 20 x 10^6 dynes/cm^2, the load durations were in the microsecond range, the test temperatures were 300, 223, 173 and 123 °K, and the measured velocities ranged from about 200 to 2000 cm/sec. Since the velocities are a linear function of stress and the velocity at a given stress increases with decreasing temperature, the velocity controlling mechanism is believed to be an interaction between the moving dislocations and the thermal waves of the lattice. The phonon viscosity and the phonon scattering mechanisms are compared to the data

    General Kerr-NUT-AdS Metrics in All Dimensions

    Full text link
    The Kerr-AdS metric in dimension D has cohomogeneity [D/2]; the metric components depend on the radial coordinate r and [D/2] latitude variables \mu_i that are subject to the constraint \sum_i \mu_i^2=1. We find a coordinate reparameterisation in which the \mu_i variables are replaced by [D/2]-1 unconstrained coordinates y_\alpha, and having the remarkable property that the Kerr-AdS metric becomes diagonal in the coordinate differentials dy_\alpha. The coordinates r and y_\alpha now appear in a very symmetrical way in the metric, leading to an immediate generalisation in which we can introduce [D/2]-1 NUT parameters. We find that (D-5)/2 are non-trivial in odd dimensions, whilst (D-2)/2 are non-trivial in even dimensions. This gives the most general Kerr-NUT-AdS metric in DD dimensions. We find that in all dimensions D\ge4 there exist discrete symmetries that involve inverting a rotation parameter through the AdS radius. These symmetries imply that Kerr-NUT-AdS metrics with over-rotating parameters are equivalent to under-rotating metrics. We also consider the BPS limit of the Kerr-NUT-AdS metrics, and thereby obtain, in odd dimensions and after Euclideanisation, new families of Einstein-Sasaki metrics.Comment: Latex, 24 pages, minor typos correcte

    The general form of supersymmetric solutions of N=(1,0) U(1) and SU(2) gauged supergravities in six dimensions

    Full text link
    We obtain necessary and sufficient conditions for a supersymmetric field configuration in the N=(1,0) U(1) or SU(2) gauged supergravities in six dimensions, and impose the field equations on this general ansatz. It is found that any supersymmetric solution is associated to an SU(2)⋉R4SU(2)\ltimes \mathbb{R}^4 structure. The structure is characterized by a null Killing vector which induces a natural 2+4 split of the six dimensional spacetime. A suitable combination of the field equations implies that the scalar curvature of the four dimensional Riemannian part, referred to as the base, obeys a second order differential equation. Bosonic fluxes introduce torsion terms that deform the SU(2)⋉R4SU(2)\ltimes\mathbb{R}^4 structure away from a covariantly constant one. The most general structure can be classified in terms of its intrinsic torsion. For a large class of solutions the gauge field strengths admit a simple geometrical interpretation: in the U(1) theory the base is K\"{a}hler, and the gauge field strength is the Ricci form; in the SU(2) theory, the gauge field strengths are identified with the curvatures of the left hand spin bundle of the base. We employ our general ansatz to construct new supersymmetric solutions; we show that the U(1) theory admits a symmetric Cahen-Wallach4×S2_4\times S^2 solution together with a compactifying pp-wave. The SU(2) theory admits a black string, whose near horizon limit is AdS3×S3AdS_3\times S_3. We also obtain the Yang-Mills analogue of the Salam-Sezgin solution of the U(1) theory, namely R1,2×S3R^{1,2}\times S^3, where the S3S^3 is supported by a sphaleron. Finally we obtain the additional constraints implied by enhanced supersymmetry, and discuss Penrose limits in the theories.Comment: 1+29 pages, late
    • 

    corecore