47 research outputs found

    Concealed by darkness: interactions between predatory bats and nocturnally migrating songbirds illuminated by DNA sequencing

    Get PDF
    Recently, several species of aerial-hawking bats have been found to prey on migrating songbirds, but details on this behaviour and its relevance for bird migration are still unclear. We sequenced avian DNA in feather-containing scats of the bird-feeding bat Nyctalus lasiopterus from Spain collected during bird migration seasons. We found very high prey diversity, with 31 bird species from eight families of Passeriformes, almost all of which were nocturnally flying sub-Saharan migrants. Moreover, species using tree hollows or nest boxes in the study area during migration periods were not present in the bats’ diet, indicating that birds are solely captured on the wing during night-time passage. Additional to a generalist feeding strategy, we found that bats selected medium-sized bird species, thereby assumingly optimizing their energetic cost-benefit balance and injury risk. Surprisingly, bats preyed upon birds half their own body mass. This shows that the 5% prey to predator body mass ratio traditionally assumed for aerial hunting bats does not apply to this hunting strategy or even underestimates these animals’ behavioural and mechanical abilities. Considering the bats’ generalist feeding strategy and their large prey size range, we suggest that nocturnal bat predation may have influenced the evolution of bird migration strategies and behaviour.Peer Reviewe

    Sexual Segregation in Iberian Noctule Bats

    Get PDF
    Sexual segregation during the breeding season is common in many temperate bat species, and may be related to sex-specific thermoregulatory, microclimatic, or energetic requirements. We compiled capture data for 3 species of Nyctalus (noctule bats) obtained over .20 years to study reproductive and migratory strategies of these species in southwestern Europe. Within the Iberian Peninsula, several different strategies regarding sex distribution and migratory behavior were observed within each of the 3 Nyctalus species. In the northern part of Iberia there are populations of the 3 species composed of males all year-round with females appearing only during the mating season. Reproduction by females in this area has not been confirmed. In central and southern Iberia there are breeding populations in which sexual segregation occurs only at the roosts or at a regional scale, possibly with females located at lower elevations during the breeding season. Female-biased, long-distance migration is likely to be the cause of sexual segregation in populations of N. noctula and N. leisleri in northern and central Iberia, but not of N. lasiopterus, absent in central Europe. For this latter species, segregation by elevation also could occur in northern Iberia. The Iberian Peninsula is a good example of how breeding strategies and migratory behavior in bats can be very flexible and vary across relatively small geographical scales.Peer reviewe

    Development of a Fixed-Wing Drone System for Aerial Insect Sampling

    Get PDF
    Most current insect research techniques are ground-based and provide scarce information about flying insects in the planetary boundary layer (PBL), which remains a poorly studied ecological niche. To address this gap, we developed a new insect-sampling method consisting of a fixed-wing drone platform with net traps attached to the fuselage, a mobile design that has optimal aerodynamic characteristics for insect capture in the PBL. We tested the proposed device on 16 flights in Doñana National Park (Spain) with two different trap designs fitted on the fuselage nose and wing. We collected 34 insect specimens belonging to four orders with a representation of twelve families at mean altitudes below 23 m above ground level and sampling altitudes between 9 and 365 m. This drone insect-sampling design constitutes a low-cost and low-impact method for insect monitoring in the PBL, especially in combination with other remote sensing technologies that directly quantify aerial insect abundance but do not provide taxonomic information, opening interesting possibilities for ecology and entomological research, with the possibility of transfer to economically important sectors, such as agriculture and health

    Development of a Fixed-Wing Drone System for Aerial Insect Sampling

    Get PDF
    Most current insect research techniques are ground-based and provide scarce information about flying insects in the planetary boundary layer (PBL), which remains a poorly studied ecological niche. To address this gap, we developed a new insect-sampling method consisting of a fixed-wing drone platform with net traps attached to the fuselage, a mobile design that has optimal aerodynamic characteristics for insect capture in the PBL. We tested the proposed device on 16 flights in Doñana National Park (Spain) with two different trap designs fitted on the fuselage nose and wing. We collected 34 insect specimens belonging to four orders with a representation of twelve families at mean altitudes below 23 m above ground level and sampling altitudes between 9 and 365 m. This drone insect-sampling design constitutes a low-cost and low-impact method for insect monitoring in the PBL, especially in combination with other remote sensing technologies that directly quantify aerial insect abundance but do not provide taxonomic information, opening interesting possibilities for ecology and entomological research, with the possibility of transfer to economically important sectors, such as agriculture and health

    A Triple-Isotope Approach to Predict the Breeding Origins of European Bats

    Get PDF
    Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (δD) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of δD as a robust geographical tracer of breeding origins of European bats by measuring δD in hair of five sedentary bat species from 45 locations throughout Europe. The δD of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking δD of bat hair to precipitation δD of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used δ13C and δ15N to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe

    Bats' Conquest of a Formidable Foraging Niche: The Myriads of Nocturnally Migrating Songbirds

    Get PDF
    Along food chains, i.e., at different trophic levels, the most abundant taxa often represent exceptional food reservoirs, and are hence the main target of consumers and predators. The capacity of an individual consumer to opportunistically switch towards an abundant food source, for instance, a prey that suddenly becomes available in its environment, may offer such strong selective advantages that ecological innovations may appear and spread rapidly. New predator-prey relationships are likely to evolve even faster when a diet switch involves the exploitation of an unsaturated resource for which few or no other species compete. Using stable isotopes of carbon and nitrogen as dietary tracers, we provide here strong support to the controversial hypothesis that the giant noctule bat Nyctalus lasiopterus feeds on the wing upon the multitude of flying passerines during their nocturnal migratory journeys, a resource which, while showing a predictable distribution in space and time, is only seasonally available. So far, no predator had been reported to exploit this extraordinarily diverse and abundant food reservoir represented by nocturnally migrating passerines

    The roosting spatial network of a bird-predator bat

    Get PDF
    The use of roosting sites by animal societies is important in conservation biology, animal behavior, and epidemiology. The giant noctule bat (Nyctalus lasiopterus) constitutes fission–fusion societies whose members spread every day in multiple trees for shelter. To assess how the pattern of roosting use determines the potential for information exchange or disease spreading, we applied the framework of complex networks. We found a social and spatial segregation of the population in well-defined modules or compartments, formed by groups of bats sharing the same trees. Inside each module, we revealed an asymmetric use of trees by bats representative of a nested pattern. By applying a simple epidemiological model, we show that there is a strong correlation between network structure and the rate and shape of infection dynamics. This modular structure slows down the spread of diseases and the exchange of information through the entire network. The implication for management is complex, affecting differently the cohesion inside and among colonies and the transmission of parasites and diseases. Network analysis can hence be applied to quantifying the conservation status of individual trees used by species depending on hollows for shelterPeer reviewe

    Las Cotorras asilvestradas y los nóctulos gigantes en los Parques urbanos de Sevilla

    No full text
    El nóctulo gigante, murciélago de amplia distribución pero de escasas citas fuera de la península Ibérica, es abundante en España en ciertas localidades destacando la población de Sevilla que es, probablemente, la más importante a nivel mundial. La existencia de estas colonias en el medio urbano se debe a la presencia de árboles de gran tamaño con huecos que los utilizan como refugios. En poblaciones conocidas, cada grupo familiar utiliza de forma simultánea varios refugios (hasta unos 20 diferentes durante la temporada de cría). Para asegurar la supervivencia de una población es necesario contar con un gran número de árboles con refugios. Las principales amenazas para la especie son la eliminación de árboles viejos y la competencia por los huecos de los árboles con las cotorras. Como la disponibilidad de refugios tiende a descender y la población de cotorras a aumentar, se deben tomar medidas de urgencia tales como instalar en los parques caja refugios para murciélagos, establecer programas de seguimiento de la población nidificante de cotorras y diseñar campañas de erradicaciónThe giant noctule bat, although exhibiting a broad distribution, is a rare bat species outside the Iberian Peninsula. However, it can be locally abundant in Spain, where the population of the city of Seville is very likely to be the most important of the world. The occurrence of colonies of this bat inside an urban habitat is probably due to the presence of large trees with cavities, as these are used as day roosts. In the monitored populations, each familiar group uses several roosts simultaneously (up to 20 different tree roosts during the breeding season). For the persistence of a population, it is necessary to preserve a high number of potential tree roosts. The greatest threat for this species is the removal of old trees and the competition with Psittacula for suitable cavities for roosting. As availability of roosts tends to decline whereas the Psittacula population is increasing, urgent measures must be implemented, like installation of bat boxes in urban parks, monitoring programs of the breeding population of Psittacula and design of eradication campaignsPeer reviewe

    Highly structured fission fusion societies in an aerial-hawking, carnivorous bat

    No full text
    In some group-living animals, societies are far from being static but are instead dynamic entities encompassing multiple scales of organization. We found that maternity colonies of giant noctule bats, Nyctalus lasiopterus, form fission–fusion societies, where group composition in single tree roosts changes on a daily basis but social cohesion in the larger group is preserved. The population inside a small city park was comprised of three distinct but cryptic social groups coexisting in close proximity. Each social group used a distinct roosting area, but some overlap existed in the boundaries between them. Social groups were stable at least in the mid term because adult females were loyal to roosting areas and young females returned to their natal social groups in successive years. Our results suggest that distinct social groups with separate roosting areas may have existed for at least 14 years. The findings described support the hypothesis that roost-switching behaviour in forest bats permits the maintenance of social bonds between colony members and enhances knowledge about a colony's roosting resources. Fission–fusion societies in forest bats might have evolved as a mechanism to cope with changing conditions in the environment by restructuring subgroups or adjusting subgroup size, to maximize the amount of information that can be transferred between colony members, or as a consequence of territory inheritance by philopatric female offspring. Other factors such as resource competition or kin selection could limit the size and composition of fission–fusion societies and promote strong social structuring within populations.Peer reviewe

    Crowding in the City: Losing and Winning Competitors of an Invasive Bird

    Get PDF
    Invasive species can take advantage of resources unexploited by natives (opportunism hypothesis) or they can exploit the same resources but more aggressively or efficiently (competition hypothesis), thus impacting native species. However, invasive species tend to exploit anthropogenic habitats that are inefficiently used by natives such as urban environments. Focusing on the ring-necked parakeet (Psittacula krameri), one of the most invasive birds worldwide, we combined observations of interspecific aggressions, species-specific cavity-nest preferences and the spatial distribution of the native cavity-nesting vertebrate community to determine the invasion process as well as its potential impacts on native species in a Mediterranean city. Our results support the competition hypothesis, suggesting that ring-necked parakeets are outcompeting native species sharing nest-site preferences. Parakeets initiated and won most interspecific aggressions, which were directed towards competitors but also towards predators. This behaviour could explain the spatial arrangement of natives, with most bird species breeding close to parakeets possibly to take advantage of their effective antipredatory behaviour. However, temporal and spatial patterns of segregation suggest that a threatened bat species is negatively affected by parakeets. This demonstrates that common species gain benefits and threatened ones (in this study, a bat and possibly a falcon) lose nest sites due to invaders. Therefore, the conservation status of the native species that pay the costs of competition with invaders should be considered. This scenario of winners and losers may, however, shift towards more losers if the ring-necked parakeet population continues to grow, thus requiring close monitoring and control/eradication programs to avoid further impactsPeer reviewe
    corecore