4,860 research outputs found

    A planar calculus for infinite index subfactors

    Full text link
    We develop an analog of Jones' planar calculus for II_1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.Comment: 56 pages, many figure

    A Parameterized Study of Maximum Generalized Pattern Matching Problems

    Get PDF
    The generalized function matching (GFM) problem has been intensively studied starting with Ehrenfreucht and Rozenberg (Inf Process Lett 9(2):86–88, 1979). Given a pattern p and a text t, the goal is to find a mapping from the letters of p to non-empty substrings of t, such that applying the mapping to p results in t. Very recently, the problem has been investigated within the framework of parameterized complexity (Fernau et al. in FSTTCS, 2013). In this paper we study the parameterized complexity of the optimization variant of GFM (called Max-GFM), which has been introduced in Amir and Amihood (J Discrete Algorithms 5(3):514–523, 2007). Here, one is allowed to replace some of the pattern letters with some special symbols “?”, termed wildcards or don’t cares, which can be mapped to an arbitrary substring of the text. The goal is to minimize the number of wildcards used. We give a complete classification of the parameterized complexity of Max-GFM and its variants under a wide range of parameterizations, such as, the number of occurrences of a letter in the text, the size of the text alphabet, the number of occurrences of a letter in the pattern, the size of the pattern alphabet, the maximum length of a string matched to any pattern letter, the number of wildcards and the maximum size of a string that a wildcard can be mapped to

    Semi-regular masas of transfinite length

    Full text link
    In 1965 Tauer produced a countably infinite family of semi-regular masas in the hyperfinite II1\mathrm{II}_1 factor, no pair of which are conjugate by an automorphism. This was achieved by iterating the process of passing to the algebra generated by the normalisers and, for each nNn\in\mathbb N, finding masas for which this procedure terminates at the nn-th stage. Such masas are said to have length nn. In this paper we consider a transfinite version of this idea, giving rise to a notion of ordinal valued length. We show that all countable ordinals arise as lengths of semi-regular masas in the hyperfinite II1\mathrm{II}_1 factor. Furthermore, building on work of Jones and Popa, we obtain all possible combinations of regular inclusions of irreducible subfactors in the normalising tower.Comment: 14 page

    Subfactors of index less than 5, part 1: the principal graph odometer

    Full text link
    In this series of papers we show that there are exactly ten subfactors, other than AA_\infty subfactors, of index between 4 and 5. Previously this classification was known up to index 3+33+\sqrt{3}. In the first paper we give an analogue of Haagerup's initial classification of subfactors of index less than 3+33+\sqrt{3}, showing that any subfactor of index less than 5 must appear in one of a large list of families. These families will be considered separately in the three subsequent papers in this series.Comment: 36 pages (updated to reflect that the classification is now complete

    Spectral measures of small index principal graphs

    Full text link
    The principal graph XX of a subfactor with finite Jones index is one of the important algebraic invariants of the subfactor. If Δ\Delta is the adjacency matrix of XX we consider the equation Δ=U+U1\Delta=U+U^{-1}. When XX has square norm 4\leq 4 the spectral measure of UU can be averaged by using the map uu1u\to u^{-1}, and we get a probability measure ϵ\epsilon on the unit circle which does not depend on UU. We find explicit formulae for this measure ϵ\epsilon for the principal graphs of subfactors with index 4\le 4, the (extended) Coxeter-Dynkin graphs of type AA, DD and EE. The moment generating function of ϵ\epsilon is closely related to Jones' Θ\Theta-series.Comment: 23 page

    Group measure space decomposition of II_1 factors and W*-superrigidity

    Full text link
    We prove a "unique crossed product decomposition" result for group measure space II_1 factors arising from arbitrary free ergodic probability measure preserving (p.m.p.) actions of groups \Gamma in a fairly large family G, which contains all free products of a Kazhdan group and a non-trivial group, as well as certain amalgamated free products over an amenable subgroup. We deduce that if T_n denotes the group of upper triangular matrices in PSL(n,Z), then any free, mixing p.m.p. action of the amalgamated free product of PSL(n,Z) with itself over T_n, is W*-superrigid, i.e. any isomorphism between L^\infty(X) \rtimes \Gamma and an arbitrary group measure space factor L^\infty(Y) \rtimes \Lambda, comes from a conjugacy of the actions. We also prove that for many groups \Gamma in the family G, the Bernoulli actions of \Gamma are W*-superrigid.Comment: Final version. Some extra details have been added to improve the expositio

    Constraints on non-thermal Dark Matter from Planck lensing extraction

    Full text link
    Distortions of CMB temperature and polarization anisotropy maps caused by gravitational lensing, observable with high angular resolution and sensitivity, can be used to constrain the sterile neutrino mass, offering several advantages against the analysis based on the combination of CMB, LSS and Ly\alpha forest power spectra. As the gravitational lensing effect depends on the matter distribution, no assumption on light-to-mass bias is required. In addition, unlike the galaxy clustering and Ly\alpha forest power spectra, the projected gravitational potential power spectrum probes a larger range of angular scales, the non-linear corrections being required only at very small scales. Taking into account the changes in the time-temperature relation of the primordial plasma and the modification of the neutrino thermal potential, we compute the projected gravitational potential power spectrum and its correlation with the temperature in the presence of DM sterile neutrino. We show that the cosmological parameters are generally not biased when DM sterile neutrino is included. From this analysis we found a lower limit on DM sterile neutrino mass m_s >2.08 keV at 95% CL, consistent with the lower mass limit obtained from the combined analysis of CMB, SDSS 3D power spectrum and SDSS Ly\alpha forest power spectrum (mνs>1.7m_{\nu_s}>1.7 keV). We conclude that although the information that can be obtained from lensing extraction is rather limited due to the high level of the lensing noise of Planck experiment, weak lensing of CMB offers a valuable alternative to constrain the dark matter sterile neutrino mass.Comment: 15 pages, 6 figure

    Unbiased bases (Hadamards) for 6-level systems: Four ways from Fourier

    Full text link
    In quantum mechanics some properties are maximally incompatible, such as the position and momentum of a particle or the vertical and horizontal projections of a 2-level spin. Given any definite state of one property the other property is completely random, or unbiased. For N-level systems, the 6-level ones are the smallest for which a tomographically efficient set of N+1 mutually unbiased bases (MUBs) has not been found. To facilitate the search, we numerically extend the classification of unbiased bases, or Hadamards, by incrementally adjusting relative phases in a standard basis. We consider the non-unitarity caused by small adjustments with a second order Taylor expansion, and choose incremental steps within the 4-dimensional nullspace of the curvature. In this way we prescribe a numerical integration of a 4-parameter set of Hadamards of order 6.Comment: 5 pages, 2 figure
    corecore