
This is a repository copy of A Parameterized Study of Maximum Generalized Pattern
Matching Problems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/130765/

Version: Accepted Version

Article:

Ordyniak, S. orcid.org/0000-0003-1935-651X and Popa, A. (2016) A Parameterized Study
of Maximum Generalized Pattern Matching Problems. Algorithmica, 75 (1). pp. 1-26. ISSN
0178-4617

https://doi.org/10.1007/s00453-015-0008-8

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Noname manuscript No.
(will be inserted by the editor)

A Parameterized Study of Maximum Generalized Pattern

Matching Problems

Sebastian Ordyniak · Alexandru Popa

the date of receipt and acceptance should be inserted later

Abstract The generalized function matching (GFM) problem has been intensively
studied starting with [Ehrenfeucht and Rozenberg, Information Processing Letters,
1979]. Given a pattern p and a text t, the goal is to find a mapping from the letters
of p to non-empty substrings of t, such that applying the mapping to p results
in t. Very recently, the problem has been investigated within the framework of
parameterized complexity [Fernau, Schmid, and Villanger, FSTTCS, 2013].

In this paper we study the parameterized complexity of the optimization vari-
ant of GFM (called Max-GFM), which has been introduced in [Amir and Nor,
Journal of Discrete Algorithms, 2007]. Here, one is allowed to replace some of the
pattern letters with some special symbols “?”, termed wildcards or don’t cares,
which can be mapped to an arbitrary substring of the text. The goal is to minimize
the number of wildcards used.

We give a complete classification of the parameterized complexity of Max-GFM
and its variants under a wide range of parameterizations, such as, the number of
occurrences of a letter in the text, the size of the text alphabet, the number
of occurrences of a letter in the pattern, the size of the pattern alphabet, the
maximum length of a string matched to any pattern letter, the number of wildcards
and the maximum size of a string that a wildcard can be mapped to.

Keywords (Maximum) Generalized Pattern Matching · Parameterized Complex-
ity

1 Introduction

In the generalized function matching problem one is given a text t and a pattern p

and the goal is to decide whether there is a match between p and t, where a single
letter of the pattern is allowed to match multiple letters of the text (we say that p
GF-matches t). For example, if the text is t = xyyx and the pattern is p = aba, then

Sebastian Ordyniak, Faculty of Informatics, Masaryk University, Brno, Czech Republic, E-
mail: sordyniak@gmail.com · Alexandru Popa, School of Science and Technology, Nazarbayev
University, E-mail: popa@fi.muni.cz
Corresponding Author: Sebastian Ordyniak

2 Sebastian Ordyniak, Alexandru Popa

a generalized function match (on short, GF-match) is a → x, b → yy, but if t = xyyz

and p = aba, then there is no GF-match. If, moreover, the matching is required
to be injective, then we term the problem generalized parameterized matching
(GPM). In [1], Amir and Nor describe applications of GFM in various areas such
as software engineering, image searching, DNA analysis, poetry and music analysis,
or author validation. GFM is a computational problem whose variants appear in
areas such as avoidable or unavoidable patterns [12], word equations [13] and the
ambiguity of morphisms [11].

GFM has a long history starting from 1979. Ehrenfeucht and Rozenberg [7]
show that GFM is NP-complete. Independently, Angluin [2,3] showed, at the same
time as Rozenberg and Salomaa, but independently, that GFM is NP-complete.
Angluin’s paper received a lot of attention, especially in language theory and
learning theory [16,17,20] (see [14] for a survey) but also in many other areas.

Recently, a systematic study of the classical complexity of a number of vari-
ants of GFM and GPM under various restrictions has been carried out [8, 18, 19].
It was shown that GFM and GPM remain NP-complete for many natural re-
strictions. Moreover, the study of GFM and its variants within the framework of
parameterized complexity has recently been initiated [9].

In this paper we study the parameterized complexity of the optimization vari-
ant of GFM (called Max-GFM) and its variants, where one is allowed to replace
some of the pattern letters with some special symbols “?”, termed wildcards or
don’t cares, which can be mapped to an arbitrary substring of the text. The goal
is to minimize the number of wildcards used. The problem was first introduced
to the pattern matching community by Amir and Nor [1]. They show that if the
pattern alphabet has constant size, then a polynomial algorithm can be found, but
that the problem is NP-complete otherwise. Then, in [4], it is shown the NP-hard-
ness of the GFM (without wildcards) and the NP-hardness of the GFM when the
function f is required to be an injection (named GPM). More specifically, GFM
is NP-hard even if the text alphabet is binary and each letter of the pattern is
allowed to map to at most two letters of the text [4]. In the same paper it is given
a
√
OPT approximation algorithm for the optimization variant of GFM where the

goal is to search for a pattern p′ that GF-matches t and has the smallest Hamming
distance to p. In [5] the optimization versions of GFM and GPM are proved to be
APX-hard.

Our results Before we discuss our results, we give formal definitions of the prob-
lems. In the following let t be a text over an alphabet Σt and let p = p1 . . . pm be
a pattern over an alphabet Σp. We say that p GF-matches t if there is a function
f : Σp → Σ+

t such that f(p1) . . . f(pm) = t. To improve the presentation we will
sometimes abuse notation by writing f(p) instead of f(p1) . . . f(pm). Let k be a
natural number. We say that a pattern p k-GF-matches t if there is a pattern p′ over
alphabet Σp ∪ {?1, . . . , ?k} such that p′ GF-matches t and p′ can be obtained from
p after replacing at most k occurrences of letters in p with any of the wildcards
?1, . . . , ?k.

Problem 1 (Maximum Generalized Function Matching) Given a text t, a
pattern p, and an integer k, decide whether p k-GF-matches t.

A Parameterized Study of Maximum Generalized Pattern Matching Problems 3

The Max-GFM can be seen as the optimization variant of GFM in which we
want to replace some of the pattern letters with special wildcard symbols, i.e., the
symbols ?1, . . . , ?k, which can be mapped to any non-empty substring of the text.

We also study the Max-GPM problem. The only difference between Max-GPM
and Max-GFM is that for Max-GPM the function f is required to be injective.
The notions of GP-matching and k-GP-matching are defined in the natural way,
e.g., we say a pattern p GP-matches a text t if p GF-matches t using an injective
function.

In this paper we study the parameterized complexity of the two problems using
a wide range of parameters:

1. maximum number of occurrences of a letter in the text #Σt;
2. maximum number of occurrences of a letter in the pattern #Σp;
3. size of the text alphabet |Σt|;
4. size of the pattern alphabet |Σp|;
5. the maximum length of a substring of the text that a letter of the pattern

alphabet can be mapped to (i.e., maxi |f(pi)|);
6. the number of wildcard letters #?;
7. the maximum length of a substring of the text that a wildcard can be mapped

to, denoted by max |f(?)|.

Our results are summarized in Table 1. We verified the completeness of our
results using a simple computer program. In particular, the program checks for
every of the 128 possible combinations of parameters C that the table contains
either: i) a superset of C under which Max-GFM/GPM is hard (and thus, Max-
GFM/GPM is hard if parameterized by C); or ii) a subset of C for which Max-
GFM/GPM is fpt (and then we have an fpt result for the set of parameters C).
Since some of our results do not hold for both Max-GFM and Max-GPM, we
carried out two separate checks, one for Max-GFM and one for Max-GPM.

#Σt |Σt| #Σp |Σp| maxi |f(pi)| #? max |f(?)| Complexity
par par – – – – – FPT (Cor. 3)
– par – par par – – FPT (Th. 1)
– par – – par – – FPT only GPM (Cor. 1)
– – par par par – par FPT (Cor. 2)
– – – par par par par FPT (Th. 2)

par – par par par par – W[1]-h (Th. 6)
par – par par – par par W[1]-h (Th. 5)
par – par – par par par W[1]-h (Th. 7)
– par par par – par par W[1]- h ([9, Th. 2.])
– – par par par par – W[1]- h (Th. 3)
– – – par par – par W[1]- h (Th. 4)
– par par – par par par para-NP-h ([1, Cor. 1]),
– par par – par – – para-NP-h only GFM ([8])
– – par – par – – para-NP-h only GPM ([8])

Table 1 Parameterized Complexity of Max-GFM and Max-GPM .

The paper is organized as follows. In Section 2 we give preliminaries, in Sec-
tion 3 we present our fixed-parameter algorithms and in Section 4 we show our
hardness results.

4 Sebastian Ordyniak, Alexandru Popa

2 Preliminaries

We define the basic notions of Parameterized Complexity and refer to other
sources [6, 10] for an in-depth treatment. A parameterized problem is a set of pairs
〈I, k〉, the instances, where I is the main part and k the parameter. The parame-
ter is usually a non-negative integer. A parameterized problem is fixed-parameter

tractable (fpt) if there exists an algorithm that solves any instance 〈I, k〉 of size n

in time f(k)nc where f is an arbitrary computable function and c is a constant
independent of both n and k. FPT is the class of all fixed-parameter tractable
parameterized problems. Because we focus on fixed-parameter tractability of a
problem we will sometimes use the notation O∗ to suppress exact polynomial de-
pendencies, i.e., a problem with input size n and parameter k can be solved in
time O∗(f(k)) if it can be solved in time O(f(k)nc) for some constant c.

Parameterized complexity offers a completeness theory, similar to the theory
of NP-completeness, that allows the accumulation of strong theoretical evidence
that some parameterized problems are not fixed-parameter tractable. This theory
is based on a hierarchy of complexity classes FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · ·
where all inclusions are believed to be strict. An fpt-reduction from a parameterized
problem P to a parameterized problem Q is a mapping R from instances of P to
instances of Q such that (i) 〈I, k〉 is a Yes-instance of P if and only if 〈I′, k′〉 =
R(I, k) is a Yes-instance of Q, (ii) there is a computable function g such that
k′ ≤ g(k), and (iii) there is a computable function f and a constant c such that R

can be computed in time O(f(k) · nc), where n denotes the size of 〈I, k〉.
For our hardness results we will often reduce from the following problem, which

is well-known to be W[1]-complete [15].

Multicolored Clique

Instance: A k-partite graph G = 〈V,E〉 with a partition V1, . . . , Vk of V .
Parameter: The integer k.
Question: Are there nodes v1, . . . , vk such that vi ∈ Vi and {vi, vj} ∈ E for
all i and j with 1 ≤ i < j ≤ k (i.e. the subgraph of G induced by {v1, . . . , vk}
is a clique of size k)?

For our hardness proofs we will often make the additional assumptions that
(1) |Vi| = |Vj | for every i and j with 1 ≤ i < j ≤ k and (2) |Ei,j | = |Er,s|
for every i, j, r, and s with 1 ≤ i < j ≤ k and 1 ≤ r < s ≤ k, where
Ei,j = { {u, v} ∈ E | u ∈ Vi and v ∈ Vj } for every i and j. To see that Multi-

colored Clique remains W[1]-hard under these additional restrictions we can
reduce from Multicolored Clique to its more restricted version using a sim-
ple padding construction as follows. Given an instance 〈G, k〉 of Multicolored

Clique we construct an instance of its more restricted version by adding edges
(whose endpoints are new vertices) between parts (i.e. V1, . . . , Vk) that do not al-
ready have the maximum number of edges between them and then adding isolated
vertices to parts that do not already have the maximum number of vertices.

Even stronger evidence that a parameterized problem is not fixed-parameter
tractable can be obtained by showing that the problem remains NP-complete even
if the parameter is a constant. The class of these problems is called para-NP.

A square is a string consisting of two copies of the same (non-empty) string.
We say that a string is square-free if it does not contain a square as a substring.

A Parameterized Study of Maximum Generalized Pattern Matching Problems 5

3 Fixed-parameter Tractable Variants

In this section we show our fixed-parameter tractability results for Max-GFM
and Max-GPM. In particular, we show that Max-GFM and Max-GPM are fixed-
parameter tractable parameterized by |Σt|, |Σp|, and maxi |f(pi)|, and also pa-
rameterized by #?, max |f(?)|, |Σp|, and maxi |f(pi)|. We start by showing fixed-
parameter tractability for the parameters |Σt|, |Σp|, and maxi |f(pi)|. We need the
following lemma.

Lemma 1 Given a pattern p = p1 . . . pm over an alphabet Σp, a text t = t1 . . . tn over

an alphabet Σt, a natural number q, and a function f : Σp → Σ+
t , then there is a

polynomial time algorithm deciding whether p q-GF/GP-matches t using the function

f .

Proof If we are asked whether p q-GP-matches t and f is not injective, then we
obviously provide a negative answer. Otherwise, we use a dynamic programming
algorithm that is similar in spirit to an algorithm in [4]. Let Σp = {a1, . . . ak}. For
every 1 ≤ i ≤ m and 1 ≤ j ≤ n, we define the function g(i, j) to be the Hamming
GFM/GPM-similarity (i.e., m minus the minimum number of wildcards needed)
between t1t2 . . . tj and p1p2 . . . pi. Then, we obtain the Hamming GFM/GPM-
similarity between p and t as g(m,n). Consequently, if m− g(m,n) > q, we return
No, otherwise we return Yes.

We now show how to recursively compute g(i, j). If i = 0, we set g(i, j) = 0
and if i ≤ j, we set:

g(i, j) = max
1≤k≤j

{g(i− 1, j − k) + I(tj−k+1 . . . tj , f(pi))}

where I(s1, s2) is 1 if the strings s1, and s2 are the same, and 0 otherwise.
We must first show that the dynamic programming procedure computes the

right function and then that it runs in polynomial time. We can see immediately
that g(0, i) = 0 for all i because in this case the pattern is empty. The recursion
step of g(i, j) has two cases: If tj−|f(pi)|+1 . . . tj = f(pi), then it is possible to map
pi to f(pi), and we can increase the number of mapped letters by one. Otherwise,
we cannot increase the Hamming GFM/GPM-similarity. However, we know that
pi has to be set to a wildcard and therefore we find the maximum of the previous
results for different length substrings that the wildcard maps to.

It is straightforward to check that g(m,n) can be computed in cubic time. ⊓⊔

Theorem 1 Max-GFM and Max-GPM parameterized by |Σt|, |Σp|, and maxi |f(pi)|
are fixed-parameter tractable.

Proof Let p, t, and q be an instance of Max-GFM or Max-GPM, respectively. The
pattern p q-GF/GP-matches t if and only if there is a function f : Σp → Σ+

t such
that p q-GF/GP-matches t using f . Hence, to solve Max-GFM/Max-GPM, it is
sufficient to apply the algorithm from Lemma 1 to every function f : Σp → Σ+

t that
could possible contribute to a q-GF/GP-matching from p to t. Because there are at

most (|Σt|)maxi |f(pi)|
|Σp|

such functions f and the algorithm from Lemma 1 runs

in polynomial time, the running time of this algorithm is O∗((|Σt|)maxi |f(pi)|
|Σp|

),
and hence fixed-parameter tractable in |Σt|, |Σp|, and maxi |f(pi)|. ⊓⊔

6 Sebastian Ordyniak, Alexandru Popa

Because in the case of Max-GPM it holds that if |Σt| and maxi |f(pi)| is
bounded then also Σp is bounded by |Σt|maxi |f(pi)|, we obtain the following corol-
lary.

Corollary 1 Max-GPM parameterized by |Σt| and maxi |f(pi)| is fixed-parameter

tractable.

We continue by showing our second tractability result for the parameters |Σp|,
maxi |f(pi)|, #?, and max |f(?)|.

Theorem 2 Max-GFM and Max-GPM parameterized by |Σp|, maxi |f(pi)|, #?,
max |f(?)|, are fixed-parameter tractable.

Proof Let p, t, and q be an instance of Max-GFM or Max-GPM, respectively.
Observe that if we could go over all possible functions f : Σp → Σ+

t that
could possible contribute to a q-GF/GP-matching from p to t, then we could
again apply Lemma 1 as we did in the proof of Theorem 1. Unfortunately, because
|Σt| is not a parameter, the number of these functions cannot be bounded as
easily any more. However, as we will show next it is still possible to bound the
number of possible functions solely in terms of the parameters. In particular, we
will show that the number of possible substrings of t that any letter of the pattern
alphabet can be mapped to is bounded by a function of the parameters. Because
also |Σp| is a parameter this immediately implies a bound (only in terms of the
given parameters) on the total number of these functions.

Let c ∈ Σp and consider any q-GF/GP-matching from p to t, i.e., a text p′ =
p′1 . . . p

′
m of Hamming distance at most q to p and a function f : Σp∪{?1, . . . , ?q} →

Σ+
t such that f(p′1) . . . f(p

′
m) = t. Then either c does not occur in p′ or c occurs in

p′. In the first case we can assign to c any non-empty substring over the alphabet
Σt (in the case of Max-GPM one additionally has to ensure that the non-empty
substrings over Σt that one chooses for distinct letters in Σp are distinct). In
the second case let p′i for some i with 1 ≤ i ≤ m be the first occurrence of c

in p′, let p′i−1 = p′1 . . . p
′
i−1, and let pi−1 = p1 . . . pi−1. Furthermore, for every

b ∈ Σp∪{?1, . . . , ?q} and w ∈ (Σp∪{?1, . . . , ?q})∗, we denote by #(b, w) the number

of times b occurs in w. Then f(c) = tcs+1 . . . tcs+|f(c)| where cs =
∑i−1

j=1 |f(p
′
j)|,

which implies that the value of f(c) is fully determined by cs and |f(c)|. Because
the number of possible values for |f(c)| is trivially bounded by the parameters (it
is bounded by maxi |f(pi)|), it remains to show that also cs is bounded by the
given parameters.

Because cs =
∑i−1

j=1 |f(p
′
j)| = (

∑
b∈Σp∪{?1,...,?q}

#(b, p′i−1)|f(b)|), we obtain

that the value of cs is fully determined by the values of #(b, p′i−1) and |f(b)| for
every b ∈ Σp ∪ {?1, . . . , ?q}. For every ? ∈ {?1, . . . , ?q} there are at most 2 possible
values for #(?, p′i−1) (namely 0 and 1) and there are at most max |f(?)| possible
values for |f(?)|. Similarly, for every b ∈ Σp there are at most q + 1 possible val-
ues for #(b, p′i−1) (the values #(b, pi−1)− q, . . . ,#(b, pi−1)) and there are at most
maxi |f(pi)| possible values for |f(b)|. Hence, the number of possible values for cs

is bounded in terms of the parameters, as required. ⊓⊔

Since |Σp| and #Σp together bound #?, we obtain the following corollary.

Corollary 2 Max-GFM and Max-GPM parameterized by #Σp, |Σp|, maxi |f(pi)|,
and max |f(?)| are fixed-parameter tractable.

A Parameterized Study of Maximum Generalized Pattern Matching Problems 7

Furthermore, because all considered parameters can be bounded in terms of the
parameters #Σt and |Σt|, we obtain the following corollary as a consequence of
any of our above fpt-results.

Corollary 3 Max-GFM and Max-GPM parameterized by #Σt and |Σt| are fixed-

parameter tractable.

4 Hardness Results

In this section we give our hardness results for (Max-)GFM and (Max-)GPM. To
show hardness for the different variants of (Max-)GFM and (Max-)GPM, we use
a parameterized reduction from Multicolored Clique. For the remainder of this
section we will assume that we are given an instance of Multicolored Clique, i.e.,
a k-partite graph G = (V,E) with partition V1, . . . , Vk of V . For every i and j with
1 ≤ i ≤ k and 1 ≤ j ≤ k, we denote by Ei,j the set { {u, v} ∈ E | u ∈ Vi and v ∈ Vj }.
As stated in the preliminaries we can assume that |Vi| = n and |Ei,j | = m for
every i and j with 1 ≤ i < j ≤ k. We will also assume that Vi = {vi1, . . . , vin} and
Ei,j = {ei,j1 , . . . , e

i,j
m }. For a vertex v ∈ V and j with 1 ≤ j ≤ k we denote by Ej(v)

the set of edges of G that are incident to v and whose other endpoint is in Vj .

We will employ two main types of reductions: (1) vertex-type reductions, where
we “guess” the vertices of a k-clique of G and (2) edge-type reductions, where we
“guess” the edges of a k-clique of G.

In the vertex-type reductions the pattern alphabet contains the letters
V1, . . . ,Vk and the reduction ensures that the set of vertices mapped to V1, . . . ,Vk

corresponds to a k-clique of G. This is achieved by forcing that for every pair i and
j with 1 ≤ i < j ≤ k, it holds that the vertices corresponding to the text mapped
to Vi and Vj are the endpoints of an edge in Ei,j .

In the edge-type reductions the pattern alphabet contains the letters Ei,j for
every i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ k. The reduction then ensures that each
Ei,j is mapped to some text representing an edge in Ei,j and that for every i with
1 ≤ i ≤ k, all edges corresponding to the text mapped to any Ei,j with j 6= i have
the same endpoint in Vi. This then implies that the edges corresponding to the
text mapped to all Ei,j form a k-clique of G.

A common theme for all our reductions is that we often need to ensure that
a certain substring of the pattern is mapped to exactly one of a list of substrings
of the text. For instance, lets say we want that the letter p from the pattern is
mapped to exactly one of the letters t1, . . . , tn in the text. We often achieve this by
using a substring of the form #; t1; t2; . . . tn;# in the text as well as a substring of
the form #L; p;R# in the pattern. Here, # and ; are special separator letters (in
both the text and the pattern) such that the pattern letters # and ; always have to
be mapped to the text letters # and ;, respectively. Varying the lengths of the text
to which the “dummy” letters L and R are mapped to now allows one to map p to
any of the letters t1, . . . , tn. Note that this way it would also be possible to map
p to any substring of ; t1; t2; . . . tn;, however, any substring containing more than
exactly one of t1, . . . , tn also necessarily contains the separator ; and the complete
reduction ensures that the remaining occurrences of p cannot be mapped any more.
Note that the details of the above construction vary depending on the considered
parameters in the reduction. For instance, if either maxi |f(pi)| or max |f(?)| are

8 Sebastian Ordyniak, Alexandru Popa

bounded, the construction has to be adapted since it uses the property that L and
R (or their wildcard replacements) can be mapped to arbitrary long substrings of
the text. In these cases L and R are replaced by many (sometimes distinct) letters
such that each of these letters can be either mapped to a substring of length one
or two. By choosing the number of letters that are mapped to a substring of length
two to the left and right of p appropriately, it is then still possible to “place” p

over the required substring of the text.
To simplify and shorten the constructions, we will often use the following short-

cuts:

– For an edge e ∈ E between vil and v
j
s where 1 ≤ i < j ≤ k and 1 ≤ l, s ≤ n, we

write vt(e) to denote the text vil@v
j
s.

– For a letter l of the text or pattern alphabet and i ∈ N, we write rp(l, i) to
denote the text consisting of repeating the letter l exactly i times.

– For a symbol l, we write enu(l, i) to denote the text l1 · · · li.

To ease understanding, we decided to present our hardness results in increasing
level of difficulty. The first two theorems use a reduction of the vertex-type with the
first vertex-type reduction being slightly simpler than the second. The remaining
theorems use a reduction of the edge-type and are again presented in increasing
levels of difficulty.

Theorem 3 Max-GFM and Max-GPM are W[1]-hard parameterized by #Σp, |Σp|,
maxi |f(pi)|, and #? (even if maxi |f(pi)| ≤ 1).

Let k′ = 2(k2). We will show the theorem by constructing a text t and a pattern
p from G and k in polynomial time such that:

(C1) the parameters #Σp, |Σp|, and #? can be bounded by a function of k.
(C2) The following statements are equivalent:

S1 p k′-GF/GP-matches t;
S2 p k′-GF/GP-matches t using a function f with maxp∈Σp

|f(p)| ≤ 1;
S3 G has a k-clique.

We set Σt = {; ,@,#,%} ∪ { li,j , ri,j | 1 ≤ i < j ≤ k } ∪ { vji | 1 ≤ i ≤ n and 1 ≤ j ≤
k } and Σp = {; ,@,#, D} ∪ {Vi | 1 ≤ i ≤ k }.

We define a preliminary text t′ as follows.

#l1,2;vt(e
1,2
1); · · · ;vt(e1,2m); r1,2# · · ·#l1,k;vt(e

1,k
1); · · · ;vt(e1,km); r1,k

#l2,3;vt(e
2,3
1); · · · ;vt(e2,3m); r2,3# · · ·#l2,k;vt(e

2,k
1); · · · ;vt(e2,km); r2,k

· · ·
#lk−1,k;vt(e

k−1,k
1); · · · ;vt(ek−1,k

m); rk−1,k#

We also define a preliminary pattern p′ as follows.

#D;V1@V2;D# . . .#D;V1@Vk;D
#D;V2@V3;D# . . .#D;V2@Vk;D

· · ·
#D;Vk−1@Vk;D#

Informally, the text t′ and the pattern p′ ensure that for every pair i and j with
1 ≤ i < j ≤ k, it holds that the vertices corresponding to the letters mapped to Vi

and Vj are the endpoints of an edge in Ei,j , which implies that the set of vertices
corresponding to the letters mapped to V1, . . . ,Vk is a k-clique of G. To achieve this

A Parameterized Study of Maximum Generalized Pattern Matching Problems 9

we also need the text t′′ and the pattern p′′ (defined below) which ensure that the
separator letters ;, @, and # of the pattern must be mapped to the corresponding
separator letters of the text and also that the letter D in Σp is mapped to % in
Σt which in turn forces that the occurrences of D in p′ are replaced by wildcards.

Let q = 2(k′ + 1). Then t is obtained by preceding t′ with the text t′′ defined
as follows.

#;@rp(%, q)

Similarly, p is obtained by preceding p′ with the text p′′ defined as follows.

#;@rp(D, q)

This completes the construction of t and p. Clearly, t and p can be constructed
from G and k in fpt-time (even polynomial time). Furthermore, because #Σp =
q + k′ = 2(k′ + 1) + k′ = 3k′ + 1, |Σp| = k + 4, and #? = k′, condition (C1)
above is satisfied. To show the remaining condition (C2), we need the following
intermediate lemmas.

Lemma 2 If G has a k-clique, then p k′-GF/GP-matches to t using a function f with

maxp∈Σp
|f(p)| ≤ 1.

Proof Because every GP-matching is also a GF-matching, it is sufficient to show
that p k′-GP-matches to t.

Let {v1h1
, . . . , vkhk

} be the vertices and { ei,j
hi,j

| 1 ≤ i < j ≤ k } be the edges

of a k-clique of G with 1 ≤ hj ≤ n and 1 ≤ hi,j ≤ m for every i and j with
1 ≤ i < j ≤ k. We put k′ wildcards on the last k′ occurrences of D in p. Informally,
these wildcards are mapped in such a way that for every 1 ≤ i < j ≤ k the
substring ;Vi@Vj ; of the pattern p is mapped to the substring ;vt(ei,j

hi,j
); of the

text t. More formally, for i and j with 1 ≤ i < j ≤ k let q = (
∑o<i

o=1(k− o))+ j. We
map the wildcard on the 2(q− 1)-th occurrence of the letter D in p′ with the text
li,j ;vt(e

i,j
1); · · · ;vt(ei,j

hi,j−1) and similarly we map the wildcard on the (2(q−1)+1)-

th occurrence of the letter D in p′ with the text vt(ei,j
hi,j+1); · · · ;vt(e

i,j
m); ri,j . Note

that in this way every wildcard is mapped to a non-empty substring of t and no
two wildcards are mapped to the same substring of t, as required.

We then define the k′-GP-matching function f as follows: f(;) =;, f(@) = @,
f(#) = #, f(Vi) = vihi

, f(D) = %, for every i and hi with 1 ≤ i ≤ k and 1 ≤ hi ≤ n.
It is straightforward to check that f together with the mapping for the wildcards
k′-GP-matches p to t. ⊓⊔

Lemma 3 Let f be a function that k′-GF-matches p to t, then: f(;) =;, f(@) = @,

f(#) = #, and f(D) = %. Moreover, all wildcards have to be placed on all the k′

occurrences of D in p′.

Proof We first show that f(D) = %. Observe that the string t′ is square-free (recall
the definition of square-free from Section 2). It follows that every two consecutive
occurrences of pattern letters in p′′ have to be mapped to a substring of t′′. Because
there are 2(k′ + 1) occurrences of D in p′′ it follows that at least two consecutive
occurrences of D in p′′ are not replaced with wildcards and hence D has to be
mapped to a substring of t′′. Furthermore, since all occurrences of D are at the
end of p′′, we obtain that D has to be mapped to %, as required. Because all

10 Sebastian Ordyniak, Alexandru Popa

occurrences of D in p′ have to be mapped to substrings of t′ and t′ does not
contain the letter %, it follows that all the k′ occurrences of D in p′ have to be
replaced by wildcards. Since we are only allowed to use at most k′ wildcards, this
shows the second statement of the lemma. Since no wildcards are used to replace
letters in p′′ it now easily follows that f(;) =;, f(@) = @ and f(#) = #. ⊓⊔

Lemma 4 If p k′-GF/GP-matches to t, then G has a k-clique.

Proof Because every GP-matching is also a GF-matching, it is sufficient to show
the statement given a k′-GF-matching of p to t.

Let f be a function that k′-GF-matches p to t. We start by showing that
|f(Vi)| = 1 for every i with 1 ≤ i ≤ k. Suppose for a contradiction that this is
not the case, i.e., there is an h with 1 ≤ h ≤ k such that |f(Vh)| > 1. Because of
Lemma 3, we know that f(#) = #, f(@) = @ and f(;) =; and that no occurrence
of #, @ and ;, respectively, in p is replaced by a wildcard. Since the number of
occurrences of # in t is equal to the number of occurrences of # in p, we obtain
that the i-th occurrence of # in p is mapped to the i-th occurrence of # in t.
Consequently, for every i and j with 1 ≤ i < j ≤ k, we obtain that the substring
;Vi@Vj ; is mapped to a substring of the string li,j ;vt(e

i,j
1); · · · ;vt(ei,jm); ri,j in t.

Moreover, because f(@) = @ and f(;) =; it follows that if |f(Vi)| > 1 then the
string f(Vi) contains at least one character v

i
l and at least one character vjs for some

l and s with 1 ≤ l, s ≤ n and the analogous property holds for Vj . Consequently,
if |f(Vh)| > 1 then for every i with 1 ≤ i ≤ k, the string f(Vh) has to contain at
least one character vil for some l with 1 ≤ l ≤ m, contradicting the fact that for
every i and j with 1 ≤ i < j ≤ k the string ;Vi@Vj ; is mapped to a substring of

li,j ;vt(e
i,j
1); · · · ;vt(ei,jm); ri,j . This shows that |f(Vi)| = 1 for every i with 1 ≤ i ≤ k.

We now claim that the set { f(Vi) | 1 ≤ i ≤ k } is a k-clique of G. Recall
that from the above argumentation, we obtained that for every i and j with
1 ≤ i < j ≤ k the substring ;Vi@Vj ; is mapped to a substring of the string

li,j ;vt(e
i,j
1); · · · ;vt(ei,jm); ri,j in t. Because f(@) = @ and no occurrence of @ is

replaced by a wildcard and furthermore |f(Vi)| = 1 for every i with 1 ≤ i ≤ k, we
obtain that both Vi and Vj are mapped to some letter vil and v

j
s for some l and s

with 1 ≤ l, s ≤ n such that {vil , v
j
s} ∈ E. Hence, { f(Vi) | 1 ≤ i ≤ k } is a k-clique of

G. ⊓⊔

Condition (C2) can now be obtained as follows: Lemma 2 shows the implication
from S3 to S2, Lemma 4 shows the implication from S1 to S3, and the implication
from S2 to S1 is trivially satisfied. This concludes the proof of Theorem 3.

Theorem 4 Max-GFM and Max-GPM are W[1]-hard parameterized by |Σp|,
maxi |f(pi)|, and max |f(?)| (even if maxi |f(pi)| ≤ 1 and max |f(?)| ≤ 2).

Let q = (k2)(8(m − 1)). We will show the theorem by constructing a text t and
a pattern p from G and k in polynomial time such that the following conditions
hold:

(C1) the parameter |Σp| can be bounded by a function of k.
(C2) The following statements are equivalent:

S1 p q-GF/GP-matches t;
S2 p q-GF/GP-matches t using a function f with maxp∈Σp

|f(p)| ≤ 1 and
max |f(?)| ≤ 2;

A Parameterized Study of Maximum Generalized Pattern Matching Problems 11

S3 G has a k-clique.

We set Σt = {; ,@,#,3,%} ∪ { vji | 1 ≤ i ≤ n and 1 ≤ j ≤ k } ∪ { li,jx , r
i,j
x | 1 ≤ i <

j ≤ k and 1 ≤ x ≤ 4(m− 1) } and Σp = {; ,@,#,3} ∪ {Vi | 1 ≤ i ≤ k }.
We first define a preliminary text t′ as follows.

#enu(l1,2, 4(m− 1));vt(e1,21); · · · ;vt(e1,2m); enu(r1,2, 4(m− 1))# · · ·
#enu(l1,k, 4(m− 1));vt(e1,k1); · · · ;vt(e1,km); enu(r1,k, 4(m− 1))

#enu(l2,3, 4(m− 1));vt(e2,31); · · · ;vt(e2,3m); enu(r2,3, 4(m− 1))# · · ·
#enu(l2,k, 4(m− 1));vt(e2,k1); · · · ;vt(e2,km); enu(r2,k, 4(m− 1))

· · ·
#enu(lk−1,k, 4(m− 1));vt(ek−1,k

1); · · · ;vt(ek−1,k
m); enu(rk−1,k, 4(m− 1))#

We also need to define a preliminary pattern p′ as follows.

#rp(3, 4(m− 1));V1@V2; rp(3, 4(m− 1))# . . .

#rp(3, 4(m− 1));V1@Vk; rp(3, 4(m− 1))
#rp(3, 4(m− 1));V2@V3; rp(3, 4(m− 1))# . . .

#rp(3, 4(m− 1));V2@Vk; rp(3, 4(m− 1))
· · ·

#rp(3, 4(m− 1));Vk−1@Vk; rp(3, 4(m− 1))#

Observe that the construction is similar to the construction in the proof of Theo-
rem 3 in that it is a vertex-type reduction. Hence, again the text t′ and the pattern
p′ ensure that for every pair i and j with 1 ≤ i < j ≤ k, it holds that the vertices
corresponding to the letters mapped to Vi and Vj are the endpoints of an edge in
Ei,j , which implies that the set of vertices corresponding to the letters mapped to
V1, . . . ,Vk is a k-clique of G. However, this time both maxi |f(pi)| and max |f(?)|
are bounded by the parameter, in fact maxi |f(pi)| ≤ 1 and max |f(?)| ≤ 2. It is
hence not possible to place a single letter (in the previous construction we used the
letter D for that purpose) to the left and the right of the occurrences of V1, . . . ,Vk.
Instead of the single letter D, we use many occurrences of the letter 3 that have to
be replaced by wildcards, which are then in turn mapped to substrings of length
either one or two. Adjusting the number of these wildcards that are mapped to
substrings of length one or two, respectively, then allows the flexibility required to
properly map the letters V1, . . . ,Vk.

To ensure that the separator letters 3, ;, @, and # of the pattern must be
mapped to the corresponding separator letters of the text, which in the case of
the letter 3 also ensures that all occurrences of 3 in p′ are replaced by wildcards,
t and p are obtained after preceding t′ and p′ with the following text.

rp(3, 2q + 1)rp(; , 2q + 1)rp(@, 2q + 1)rp(#, 2q + 1)

This completes the construction of t and p. Clearly, t and p can be constructed from
G and k in fpt-time (even polynomial time). Furthermore, |Σp| = k + 4 showing
condition (C1). It remains to show condition (C2), for which we will need the
following intermediate lemmas.

Lemma 5 If G has a k-clique then p q-GF/GP-matches t using a function f with

maxp∈Σp
|f(p)| ≤ 1 and max |f(?)| ≤ 2.

Proof Because every GP-matching is also a GF-matching, it is sufficient to show
that p q-GP-matches to t.

12 Sebastian Ordyniak, Alexandru Popa

Let {v1h1
, . . . , vkhk

} be the vertices and { ei,j
hi,j

| 1 ≤ i < j ≤ k } be the edges of a

k-clique of G with 1 ≤ hj ≤ n and 1 ≤ hi,j ≤ m for every i and j with 1 ≤ i < j ≤ k.
The function f that r-GP-matching p to t is defined as follows: f(3) = 3, f(;) =;,
f(@) = @, f(#) = #, and f(Vi) = vihi

for every i with 1 ≤ i ≤ k.
We put q wildcards on the last q occurrences of 3 in p, i.e., every occurrence

of 3 in p′. The length of the text the wildcards are mapped to is determined as
follows. For an edge e

i,j
hi,j

consider the substring of p′ corresponding to e
i,j
hi,j

, i.e.,

the substring #rp(3, 4(m − 1));Vi@Vj ; rp(3, 4(m − 1)). The first 4(hi,j − 1) and
the last 4(m−hi,j) occurrences of 3 (in this substring) are replaced with wildcards
that are mapped to texts of length 2. All the remaining occurrences of 3 (in this
substring) are replaced with wildcards that are mapped to texts of length 1. Note
that because each of the wildcards is mapped to a substring containing a letter
that occurs only once in t, i.e., one of the letters l

i,j
x and r

i,j
x , the mapping of the

wildcards is injective. Then, maxp∈Σp
|f(p)| ≤ 1, max |f(?)| ≤ 2, f is injective and

it is now straightforward to verify that f q-GP-matches p to t. ⊓⊔

Lemma 6 For any function f that q-GF-matches p to t it holds that: f(3) = 3,

f(;) =;, f(@) = @, and f(#) = #.

Proof We first show that |f(3)| = |f(;)| = |f(@)| = |f(#)| = 1. Suppose for
the sake of contradiction that this does not hold, i.e., one of these letters, in the
following denoted by l, is mapped to more than one letter in the text. Because
l appears at least 2q + 1 times in p, we obtain that at least q + 1 occurrences
of l in p are not replaced by a wildcard. However, it easy to verify that t′ does
not contain q + 1 occurrences of any string of length at least 2. This shows that
|f(3)| = |f(;)| = |f(@)| = |f(#)| = 1. It remains to show that f(3) = 3, f(;) =;,
f(@) = @, and f(#) = #. Suppose for a contradiction that this is not the case.
Then either:

– One of these letters, in the following denoted by l, is mapped to a letter in
Σt \ {3, ; ,@,#}. Because l occurs at least 2q + 1 times in p, we obtain that
at least q + 1 occurrences of l are not mapped to a wildcard. However, none
of the letters in Σt \ {3, ; ,@,#} occurs more than q times, contradicting our
assumption that f is a q-GF-matching from p to t.

– Otherwise, there at least two of these letters, in the following denoted by l

and l′, such that f(l) = f(l′) ∈ {3, ; ,@,#}. Together l and l′ occur at least
4q + 2 times in p and at least 3q + 2 of these occurrences are not replaced by
wildcards. However, no letter in Σt occurs more than 3q+1 times, contradicting
our assumption that f is a q-GF-matching from p to t.

Hence, in both of the above cases we obtain a contradiction to our assumption
that f is a q-GF-matching from p to t. This completes the proof of the lemma. ⊓⊔

Lemma 7 Any q-GF-matching of p to t replaces all the q occurrences of 3 in p′ with

wildcards.

Proof It follows from the previous lemma that f(3) = 3 for any function that
q-GF-matches p to t. Because 3 occurs exactly 3q + 1 times in p but only 2q + 1
times in t, it follows that at least q occurrences of 3 in p have to be replaced
by a wildcard. Since we are only allowed to replace at most q letters of p with a
wildcard and all occurrences of 3 in t are at the beginning of t, the claim of the
lemma follows. ⊓⊔

A Parameterized Study of Maximum Generalized Pattern Matching Problems 13

Lemma 8 If p q-GF/GP-matches t then G has a k-clique.

Proof Because every GP-matching is also a GF-matching, it is sufficient to show
the statement given a q-GF-matching of p to t.

Let f be a function that q-GF-matches p to t. Because of Lemma 6, it holds that
f(3) = 3, f(;) =;, f(@) = @, and f(#) = #. Furthermore, because of Lemma 7
the only letters in p that are replaced with wildcards are the last q occurrences of
3 in p. Because the number of occurrences of the letter # is the same in t and p

each occurrence of # in p has to be mapped to its corresponding occurrence in t.
We obtain that for every i and j with 1 ≤ i < j ≤ k the substring

rp(3, 4(m− 1));Vi@Vj ; rp(3, 4(m− 1))

of p has to be mapped to the substring

enu(li,j , 4(m− 1));vt(ei,j1); · · · ;vt(ei,jm); enu(ri,j , 4(m− 1))

of t. Furthermore, because f(;) =; and f(@) = @, we obtain that:

(*) For every i and j with 1 ≤ i < j ≤ k the substring ;Vi@Vj ; has to be mapped

to a substring of ;vt(ei,j1); · · · ;vt(ei,jm);.

We show next that for every i with 1 ≤ i ≤ k, f(Vi) = vil for some l with 1 ≤ l ≤ n.
Suppose not, and let j with 1 ≤ j ≤ k and j 6= i. Then because of (*), f(Vi)
contains at least one letter vil and at least one letter v

j
s for some l and s with

1 ≤ l, s ≤ n. Let j′ with 1 ≤ j′ ≤ k such that j′ 6= i and j′ 6= j. Because of
(*) applied to the pair i and j′, we obtain that either ;Vi@Vj′ ; is mapped to the

substring ;vt(ei,j
′

1); · · · ;vt(ei,j
′

m); (if i < j′) or ;Vj′@Vi; is mapped to the substring

;vt(ej
′,i

1); · · · ;vt(ej
′,i

m); (if i > j′). Hence, in both cases Vi is mapped to a substring

that does not contain v
j
s, contradicting the fact that Vi is never replaced by a

wildcard. This shows that for every i with 1 ≤ i ≤ k, f(Vi) = vil for some l with
1 ≤ l ≤ n and consequently for every i and j with 1 ≤ i < j ≤ k, the substring
Vi@Vj of p has to be mapped to a substring vt(ei,j

l
) of t for some 1 ≤ l ≤ m.

Hence, the set { f(Vi) | 1 ≤ i ≤ k } is a k-clique of G. ⊓⊔

Condition (C2) can now be obtained as follows: Lemma 5 shows the implication
from S3 to S2, Lemma 8 shows the implication from S1 to S3, and the implication
from S2 to S1 is trivially satisfied. This concludes the proof of Theorem 4.

The following theorems use an edge-type reduction. This is mainly because
#Σt is part of the combined parameter, and hence we cannot repeat the text
letters corresponding to vertices of G arbitrary often anymore, making it basically
impossible to apply a vertex-type reduction.

Theorem 5 GFM and GPM are W[1]-hard parameterized by #Σt, #Σp, and |Σp|.

Observe that the above theorem implies that also Max-GFM and Max-GPM are
W[1]-hard additionally parameterized by #? and max |f(?)|.

We will show the theorem by constructing a text t and a pattern p from G and
k in polynomial time such that p GF/GP-matches t if and only if G has a k-clique.
The alphabet Σt consists of:

– the letter # (used as a separator);
– one letter ae for every e ∈ E (representing the edges of G);

14 Sebastian Ordyniak, Alexandru Popa

– one letter #i for every i with 1 ≤ i ≤ n (used as special separators that group
edges incident to the same vertex);

– the letters li,j , ri,j , li, ri for every i and j with 1 ≤ i < j ≤ k (used as dummy
letters to ensure injectivity for GPM);

– the letter dve and dv for every e ∈ E and v ∈ V (G) with v ∈ e (used as dummy
letters to ensure injectivity for GPM).

We set Σp = {#} ∪ { Ei,j , Li,j , Ri,j , Li, Ri, Ai | 1 ≤ i < j ≤ k } ∪ {Di,j | 1 ≤ i ≤
k and 1 ≤ j ≤ k+1 }. Furthermore, for a vertex v ∈ V (G), we write e(v) to denote
the text el(v,E1(v)) · · · el(v,Ek(v))d

v, where el(v,E′), for vertex v and a set E′ of
edges with E′ = {e1, . . . , el}, is the text dve1ae1d

v
e2ae2 · · · dvelael .

We first define the following preliminary text and pattern strings. Let t1 be
the text:

#l1,2ae1,21

· · · a
e
1,2
m

r1,2# · · ·#l1,kae1,k1

· · · a
e
1,k
m

r1,k

#l2,3ae2,31

· · · a
e
2,3
m

r2,3# · · ·#l2,kae2,k1

· · · a
e
2,k
m

r2,k
· · ·

#lk−1,kaek−1,k
1

· · · a
e
k−1,k
m

rk−1,k

Let t2 be the text:

#l1#1e(v
1
1)#1 · · ·#ne(v

1
n)#nr1

· · ·
#lk#1e(v

k
1)#1 · · ·#ne(v

k
n)#nrk#

Let p1 be the pattern:

#L1,2E1,2R1,2# . . .#L1,kE1,kR1,k

#L2,3E2,3R2,3# . . .#L2,kE2,kR2,k

· · ·
#Lk−1,kEk−1,kRk−1,k

For i, j with 1 ≤ i, j ≤ k, let I(i, j) be the letter Ei,j if i < j, the letter Ej,i if
i > j and the empty string if i = j. We define p(1) to be the pattern:

A1D1,2I(1, 2)D1,3I(1, 3) · · · · · ·D1,kI(1, k)D1,k+1A1

we define p(k) to be the pattern:

AkDk,1I(k, 1)Dk,2I(k, 2) · · · · · ·Dk,k−1I(k, k − 1)Dk,k+1Ak

and for every i with 1 < i < k, we define p(i) to be the pattern:

AiDi,1I(i, 1)Di,2I(i, 2) · · ·Di,i−1I(i, i− 1)
Di,i+1I(i, i+ 1) · · ·Di,kI(i, k)Di,k+1Ai

Then p2 is the pattern:

#L1p(1)R1# · · ·#Lkp(k)Rk#

We also define t0 to be the text ## and p0 to be the pattern ##. Then, t is the
concatenation of t0, t1 and t2 and p is a concatenation of p0, p1 and p2.

Informally, the text t0 and the pattern p0 ensure that the pattern letter # has
to be mapped to the text letter #. Furthermore, the text t1 and the pattern p1
ensure that for every i and j with 1 ≤ i < j ≤ k, the pattern letter Ei,j is mapped
to a text letter ae, where e ∈ Ei,j , and hence is mapped to a text corresponding to

A Parameterized Study of Maximum Generalized Pattern Matching Problems 15

an edge in Ei,j . Finally, the text t2 and the pattern p2 ensure that for every i with
1 ≤ i ≤ k, all edges corresponding to the text mapped to any Ei,j with j 6= i have
the same endpoint in Vi. Together this means that the set of edges corresponding
to the text mapped to all the letters Ei,j forms a k-clique of G.

This completes the construction of t and p. Clearly, t and p can be constructed
from G and k in fpt-time (even polynomial time). Furthermore, #Σt = (k2)+k+3,

#Σp = (k2) + k + 3, |Σp| = k(k + 1) + 3(k2) + 3k + 1 and hence bounded by k, as
required. It remains to show that G has a k-clique if and only if p GF/GP-matches
t.

Lemma 9 If G has a k-clique then p GF/GP-matches t.

Proof Because every GP-matching is also a GF-matching, it is sufficient to show
that p k′-GP-matches to t.

Let {v1h1
, . . . , vkhk

} be the vertices and { ei,j
hi,j

| 1 ≤ i < j ≤ k } be the

edges of a k-clique of G with 1 ≤ hi ≤ n and 1 ≤ hi,j ≤ m for every i

and j with 1 ≤ i < j ≤ k. We define the function f that k′-GP-matches
p to t as follows: We set f(#) = #. Moreover, for every i and j with 1 ≤
i < j ≤ k, we set f(Ei,j) = a

e
i,j

hi,j

, f(Ai) = #i, f(Li,j) = li,jaei,j1

· · · a
e
i,j

hi,j−1

,

f(Ri,j) = a
e
i,j

hi,j+1

· · · a
e
i,j
m

ri,j , f(Li) = #li#1e(v
i
1)#1 · · ·#hi−1e(v

i
hi−1)#hi−1, and

f(Ri) = #hi+1e(v
i
hi+1)#hi+1 · · ·#ne(v

i
n)#nri.

For every i and j with i 6= j, let e(i, j) be the edge e
i,j
hi,j

if i < j and the edge

e
j,i
hj,i

, otherwise. Then, the letters Di,j are mapped as follows:

– For every i and j with 1 ≤ i ≤ k, 2 ≤ j ≤ k, i 6= j, and (i, j) 6= (1, 2), we
map f(Di,j) to the substring of e(vihi

) in between the occurrences (and not
including these occurrences) of the letters e(i, j − 1) and e(i, j).

– We map f(D1,2) to be the prefix of e(v1h1
) ending before the letter e(1, 2).

– For every i with 2 ≤ i ≤ k, we map f(Di,1) to the prefix of e(vihi
) ending before

the letter e(i, 1).
– For every i with 1 ≤ i < k, we map f(Di,k+1) to the suffix of e(vihi

) starting
after the letter e(i, k).

– We map f(Dk,k+1) to be the suffix of e(v1h1
) starting after the letter e(k, k−1).

Observe because f maps each of the letters Li,j , Ri,j , Li, Ri, and Di,j to a substring
of t containing a letter that occurs only once in t, i.e., the letters li,j , ri,j , li, ri,
and dve , respectively, and the mappings for #, Ei,j , and Ai are obviously pairwise
distinct, we obtain that f is injective. It is now straightforward to check that f

GP-matches p to t. ⊓⊔

Lemma 10 If p GF/GP-matches t, then G has a k-clique.

Proof Because every GP-matching is also a GF-matching, it is sufficient to show
the statement given a GF-matching of p to t.

Let f be a function that GF-matches p to t. We first show that f(#) = #.
Suppose for a contradiction that f(#) 6= #. Because t and p start with ## it
follows that f(#) is a string that starts with ##. However, t does not contain any
other occurrence of the string ## and hence the remaining occurrences of # in p

cannot be matched by f .

16 Sebastian Ordyniak, Alexandru Popa

Because t and p have the same number of occurrences of #, it follows that the
i-th occurrences of # in p has to be mapped to the i-th occurrence of # in t. We
obtain that:

(1) For every i, j with 1 ≤ i < j ≤ k, the substring Li,jEi,jRi,j of p has to be
mapped to the substring li,jaei,j1

· · · a
e
i,j
m

ri,j of t.

(2) For every i with 1 ≤ i ≤ k, the substring Lip(i)Ri of p has to be mapped to
the substring li#1e(v

i
1)#1 · · ·#ne(v

i
n)#nri of t.

Because for every i with 1 ≤ i ≤ k the letters #j are the only letters that occur
more than once in the substring li#1e(v

i
1)#1 · · ·#ne(v

i
n)#nri of t, we obtain from

(2) that Ai has to be mapped to #j for some j with 1 ≤ j ≤ n. Consequently:

(3) for every i with 1 ≤ i ≤ k, the substring p(i) of p has to be mapped to a
substring #je(v

i
j)#j of t for some j with 1 ≤ j ≤ n.

It follows from (1) that for every i, j with 1 ≤ i < j ≤ k, f(Ei,j) is mapped to
some edges between Vi and Vj . We show next that f maps Ei,j to exactly one edge
between Vi and Vj . Assume not, then there are two edges mapped to Ei,j via f that
either have different endpoints in Vi or Vj . W.l.o.g. suppose that the former is the
case, i.e., there are two edges e and e′ contained in f(Ei,j) with distinct endpoints
in Vi and let l with 1 ≤ x ≤ n be such that according to (3) the substring p(i) of
p is mapped to the substring #xe(v

i
x)#x of t. Because #xe(v

i
x)#x contains only

edges incident to the vertex vix in Vi one of the two edges e or e′ is not contained in
#xe(v

i
x)#x and hence the substring p(i) (which contains Ei,j) cannot be mapped

to #xe(v
i
x)#x contradicting (3). This shows that f maps Ei,j to exactly one edge

between Vi and Vj . Furthermore, because of (3) it follows that for every i with
1 ≤ i ≤ k, it holds that the edges mapped to any Ex,y with 1 ≤ x < y ≤ k such
that x = i or y = i have the same endpoint in Vi. Hence, the set of edges mapped
to the letters Ei,j for 1 ≤ i < j ≤ k forms a k-clique of G. ⊓⊔

This concludes the proof of Theorem 5.

Theorem 6 Max-GFM and Max-GPM are W[1]-hard parameterized by #Σt, #Σp,

|Σp|, maxi |f(pi)|, and #? (even if maxi |f(pi)| ≤ 1).

Informally, the construction is very similar to the construction given in the proof
of Theorem 5. The main difference is that now maxi |f(pi)| is bounded by the
parameter and hence we can no longer use single letters (Li,j , Ri,j , Li, Ri, and
Di,j) to shift the letters Ei,j over the right position in the text. Instead we will
introduce a letter D and force it to be replaced by wildcards, which then can be
freely mapped to substrings of the text of arbitrary length.

Let k′ = 2(k2) + k(k + 2). We will show the theorem by constructing a text
t and a pattern p from G and k in polynomial time such that the following two
conditions are satisfied:

(C1) the parameters #Σt, #Σp, |Σp|, and #? can be bounded by a function of k.
(C2) The following statements are equivalent:

S1 p k′-GF/GP-matches t;
S2 p k′-GF/GP-matches t using a function f with maxp∈Σp

|f(p)| ≤ 1;
S3 G has a k-clique.

The alphabet Σt consists of:

A Parameterized Study of Maximum Generalized Pattern Matching Problems 17

– the letter # (used as a separator);
– the letter % (used to force the wildcards);
– one letter ae for every e ∈ E (representing the edges of G);
– one letter #i for every i with 1 ≤ i ≤ n (used as separators that group edges

incident to the same vertex);
– the letters li,j , ri,j , li, ri for every i and j with 1 ≤ i < j ≤ k (used as dummy

letters to ensure injectivity for GPM);
– the letter dve for every e ∈ E and v ∈ V (G) with v ∈ e and the letter dv for

every v ∈ V (G) (used as dummy letters to ensure injectivity for GPM).

We set Σp = {#, D} ∪ { Ei,j | 1 ≤ i < j ≤ k }.
For a vertex v ∈ V (G), we write e(v) to denote the text

el(v,E1(v)) · · · el(v,Ek(v))d
v, where el(v,E′), for vertex v and a set E′ of

edges with E′ = {e1, . . . , el}, is the text dve1ae1d
v
e2ae2 · · · dvelael .

We first define the following preliminary text and pattern strings. Let t1 be
the text:

#l1,2ae1,21

· · · a
e
1,2
m

r1,2# · · ·#l1,kae1,k1

· · · a
e
1,k
m

r1,k

#l2,3ae2,31

· · · a
e
2,3
m

r2,3# · · ·#l2,kae2,k1

· · · a
e
2,k
m

r2,k
· · ·

#lk−1,kaek−1,k
1

· · · a
e
k−1,k
m

rk−1,k

Let t2 be the text:

#l1#1e(v
1
1)#1 · · ·#ne(v

1
n)#nr1

· · ·
#lk#1e(v

k
1)#1 · · ·#ne(v

k
n)#nrk#

Let p1 be the pattern:

#DE1,2D# . . .#DE1,kD
#DE2,3D# . . .#DE2,kD

· · ·
#DEk−1,kD

For i, j with 1 ≤ i, j ≤ k, let I(i, j) be the letter Ei,j if i < j, the letter Ej,i if
i > j and the empty string if i = j. We define p(1) to be the pattern:

A1DI(1, 2)DI(1, 3) · · · · · ·DI(1, k)DA1

, we define p(k) to be the pattern:

AkDI(k, 1)DI(k, 2) · · · · · ·DI(k, k − 1)DAk

, and for every i with 1 < i < k, we define p(i) to be the pattern:

AiDI(i, 1)DI(i, 2) · · ·DI(i, i− 1)DI(i, i+ 1) · · ·DI(i, k)DAi

Then p2 is the pattern:

#L1p(1)R1# · · ·#Lkp(k)Rk#

Let q = 2(k′ + 1). We define t0 to be the text #rp(%, q) and p0 to be the pattern
#rp(D, q). Then, t is the concatenation of t0, t1 and t2 and p is a concatenation
of p0, p1 and p2.

As mentioned above the construction is very similar to the construction used
in the previous theorem. In particular, the purposes of t1 and p1 and t2 and p2

18 Sebastian Ordyniak, Alexandru Popa

are the same a before. Additionally, the text t0 and the pattern p0 ensure that the
pattern letter # has to be mapped to the text letter # and that the pattern letter
D must be mapped to the text letter % and hence all occurrences of D in p1 and
p2 have to be mapped to wildcards.

This completes the construction of t and p. Clearly, t and p can be constructed
from G and k in fpt-time (even polynomial time). Furthermore, #Σt = q, #Σp =
q+k′, |Σp| = (k2)+k+2, and #? = k′, showing condition (C1). It remains to show
condition C2, for which we need the following intermediate lemmas.

Lemma 11 If G has a k-clique then p k′-GF/GP-matches t using a function f with

maxp∈Σp
|f(p)| ≤ 1.

Proof Because every GP-matching is also a GF-matching, it is sufficient to show
that p k′-GP-matches to t.

Let {v1h1
, . . . , vkhk

} be the vertices and { ei,j
hi,j

| 1 ≤ i < j ≤ k } be the edges

of a k-clique of G with 1 ≤ hi ≤ n and 1 ≤ hi,j ≤ m for every i and j with
1 ≤ i < j ≤ k. We define the function f that k′-GP-matches p to t as follows: We
set f(#) = # and f(D) = %. Moreover, for every i and j with 1 ≤ i < j ≤ k, we
set f(Ei,j) = a

e
i,j

hi,j

and f(Ai) = #i. We put k′ wildcards on the last k′ occurrences

of D in p. The mapping of these wildcards is defined very similar to the mapping
of the letters Li,j , Ri,j , Li, Ri, and Di,j in the proof of Lemma 9 and will not be
repeated here. Using this mapping ensures that every wildcard is mapped to an
non-empty substring of t and no two wildcards are mapped to the same substring
of t. It is straightforward to check that f together with above mapping for the
wildcards k′-GP-matches p to t. ⊓⊔

Lemma 12 Let f be a function that k′-GF-matches p to t, then: f(#) = # and

f(D) = %. Moreover, all wildcards have to be placed on all the k′ occurrences of D in

p0.

Proof We first show that f(D) = %. Observe that the only squares in the string t

are contained in t0 (recall the definition of squares from Section 2). It follows that
every two consecutive occurrences of pattern letters in p0 (which are not replaced
by wildcards) have to be mapped to a substring of t0. Because there are 2(k′ +1)
occurrences of D in p0 it follows that at least two consecutive occurrences of D in
p0 are not replaced with wildcards and hence D has to be mapped to a substring
of t0. Furthermore, since all occurrences of D are at the end of p0, we obtain that
D has to be mapped to %, as required. Because all occurrences of D in p0 have
to be mapped to substrings of the concatenation of t1 and t2, but these strings
do not contain the letter %, it follows that all the k′ occurrences of D in p1 and
p2 have to be replaced by wildcards. Since we are only allowed to use at most k′

wildcards, this shows the second statement of the claim. Since no wildcards are
used to replace letters in p0 it now easily follows that f(#) = #. ⊓⊔

Lemma 13 If p k′-GF/GP-matches t, then G has a k-clique.

Proof Because every GP-matching is also a GF-matching, it is sufficient to show
the statement given a k′-GF-matching of p to t.

Let f be a function that k′-GF-matches p to t. Because of Lemma 12, we
know that f(#) = # and that no occurrence of # in p is replaced by a wildcard.

A Parameterized Study of Maximum Generalized Pattern Matching Problems 19

Because t and p have the same number of occurrences of #, it follows that the
i-th occurrences of # in p has to be mapped to the i-th occurrence of # in t. We
obtain that:

(1) For every i, j with 1 ≤ i < j ≤ k, the substring DEi,jD of p has to be mapped
to the substring li,jaei,j1

· · · a
e
i,j
m

ri,j of t.

(2) For every i with 1 ≤ i ≤ k, the substring Lip(i)Ri of p has to be mapped to
the substring li#1e(v

i
1)#1 · · ·#ne(v

i
n)#nri of t.

Because for every i with 1 ≤ i ≤ k the letters #j are the only letters that occur
more than once in the substring li#1e(v

i
1)#1 · · ·#ne(v

i
n)#nri of t, we obtain from

(2) that Ai has to be mapped to #j for some j with 1 ≤ j ≤ n. Consequently:

(3) for every i with 1 ≤ i ≤ k, the substring p(i) of p has to be mapped to a
substring #je(v

i
j)#j of t for some j with 1 ≤ j ≤ n.

It follows from (1) that for every i, j with 1 ≤ i < j ≤ k, f(Ei,j) is mapped to
an edge between Vi and Vj . Furthermore, because of (3) it follows that for every
i with 1 ≤ i ≤ k, it holds that the edges mapped to any Ex,y with 1 ≤ x < y ≤ k

such that x = i or y = i have the same endpoint in Vi. Hence, the set of edges
mapped to the letters Ei,j for 1 ≤ i < j ≤ k form a k-clique of G. ⊓⊔

Condition (C2) can now be obtained as follows: Lemma 11 shows the implication
from S3 to S2, Lemma 13 shows the implication from S1 to S3, and the implication
from S2 to S1 is trivially satisfied. This concludes the proof of Theorem 6.

Theorem 7 GFM and GPM are W[1]-hard parameterized by #Σt, #Σp, and

maxi |f(pi)| (even if maxi |f(pi)| ≤ 2).

Observe that the above theorem implies W[1]-hardness for Max-GFM and Max-
GPM additionally parameterized by #?, and max |f(?)| (even if #? = max |f(?)| =
0).

Informally, the construction is very similar to the construction used in the
proof of Theorem 5. The main difference is that because maxi |f(pi)| is bounded
by the parameter, it is not sufficient anymore to use single “dummy” letters to the
left and right of the letters Ei,j . Instead, we need to use many distinct “dummy”
letters – these “dummy” letters need to be distinct because also #Σp is bounded
by the parameter – to the left and right of Ei,j each of which can be assigned
either to a substring of length one or two. Similar to the construction used in the
proof of Theorem 4, this allows us to freely map the letters Ei,j by varying the
number of “dummy” letters that are mapped to a substring of length one or two,
respectively.

We will show the theorem by constructing a text t and a pattern p from G and
k such that the following two conditions hold:

(C1) the parameters #Σt and #Σp are bounded by k.
(C2) The following statements are equivalent:

S1 p GF/GP-matches t;
S2 p GF/GP-matches t using a function f with maxp∈Σp

|f(p)| ≤ 2;
S3 G has a k-clique.

Let q = 2kn(n− 1) + 2n+ (k − 1)m− 1. The alphabet Σt consists of:

– the letter # (used as a separator);

20 Sebastian Ordyniak, Alexandru Popa

– the letter #i for every 1 ≤ i ≤ n (used as a separator);
– the letters l

i,j
x and r

i,j
x for every 1 ≤ i < j ≤ k and 1 ≤ x ≤ m − 1 (used as

dummy letters allowing to choose an edge between Vi and Vj);

– the letters l
v,j
x and r

v,j
x for every v ∈ Vi, 1 ≤ j ≤ k, and 1 ≤ x ≤ n − 1, where

1 ≤ i ≤ k and j 6= i (used as dummy letters allowing to an endpoint of an edge
incident to v in Vj);

– the letters lix and rix for every 1 ≤ i ≤ k and 1 ≤ x ≤ q (used as dummy letters
allowing to choose a vertex in Vi);

– the letter e
i,j
x for every 1 ≤ i < j ≤ k and 1 ≤ x ≤ m (representing the edges of

G).

The alphabet Σp consists of:

– the letter # (used as a separator);
– the letters L

i,j
x and R

i,j
x for every 1 ≤ i < j ≤ k and 1 ≤ x ≤ m − 1 (used as

placeholders allowing to choose an edge between Vi and Vj);

– the letters Li,j
x and Ri,j

x for every 1 ≤ i, j ≤ k with i 6= j, and 1 ≤ x ≤ n − 1
(used as placeholders allowing to verify an edge between Vi and Vj);

– the letters L
i
x and R

i
x for every 1 ≤ i ≤ k and 1 ≤ x ≤ q (used as placeholders

allowing to verify that the edges chosen incident to Vi have the same endpoint);
– the letter Ei,j for every 1 ≤ i < j ≤ k (holds the chosen edge between Vi and

Vj);
– the letter Ai for every 1 ≤ i ≤ n (used as separators).

Furthermore, for a vertex v ∈ V (G) and i with 1 ≤ i ≤ k, we write e(v, i) to
denote the text el(Ei(v)), where el(E′) (for a set of edges E′) is a list of all the
letters in Σt that correspond to the edges in E′.

We first define the following preliminary text and pattern strings. For i and j

with 1 ≤ i < j ≤ k, we denote by t(i, j) the text:
enu(li,j ,m− 1)enu(ei,j ,m)enu(ri,j ,m− 1) . Then, t1 is the text:

#t(1, 2)# · · ·#t(1, k)
#t(2, 3)# · · ·#t(2, k)

· · ·
#t(k − 1, k)#

For a vertex v ∈ Vi, and j with 1 ≤ j ≤ k, we denote by t(v, j) the text
enu(lv,j , n− 1)e(v, j)enu(rv,j , n− 1) if j 6= i and the empty text if j = i. Further-
more, we denote by t(v) the text t(v, 1) · · · t(v, k). Let t2 be the text:

enu(l1, q)#1t(v
1
1)#1 · · ·#nt(v

1
n)#nenu(r

1, q)
#enu(l2, q)#1t(v

2
1)#1 · · ·#nt(v

2
n)#nenu(r

2, q)
· · ·

#enu(lk, q)#1t(v
k
1)#1 · · ·#nt(v

k
n)#nenu(r

k, q)

For i and j with 1 ≤ i < j ≤ k, we denote by p(i, j) the pattern
enu(Li,j ,m− 1)Ei,jenu(Ri,j ,m− 1). Let p1 be the pattern:

#p(1, 2)# . . .#p(1, k)
#p(2, 3)# . . .#p(2, k)

· · ·
#p(k − 1, k)#

A Parameterized Study of Maximum Generalized Pattern Matching Problems 21

For i, j with 1 ≤ i, j ≤ k, let I(i, j) be the letter Ei,j if i < j, the letter Ej,i
if i > j and the empty string if i = j. Furthermore, let pe(i, j) be the pattern
enu(Li,j , n−1)I(i, j)enu(Ri,j , n−1) if i 6= j and the empty pattern otherwise. Let
p2 be the pattern:

enu(L1, q)A1pe(1, 1)pe(1, 2) · · ·pe(1, k)A1enu(R
1, q)

#enu(L2, q)A2pe(2, 1)pe(2, 2) · · ·pe(2, k)A2enu(R
2, q)

· · ·
#enu(Lk, q)Akpe(k, 1)pe(k, 2) · · ·pe(k, k)Akenu(R

k, q)

We also define t0 to be the text ## and p0 to be the pattern ##. Then, t is the
concatenation of t0, t1 and t2 and p is a concatenation of p0, p1 and p2.

The role of the texts t0, t1, t2 and the patterns p0, p1, p2 is very similar
to the role they played in the proof of Theorem 5. That is the text t0 and the
pattern p0 ensure that the pattern letter # has to be mapped to the text letter
#. Furthermore, the text t1 and the pattern p1 ensure that for every i and j with
1 ≤ i < j ≤ k, the pattern letter Ei,j is mapped to a text letter ae, where e ∈ Ei,j ,
and hence is mapped to a text corresponding to an edge in Ei,j . Finally, the text t2
and the pattern p2 ensure that for every i with 1 ≤ i ≤ k, all edges corresponding
to the text mapped to any Ei,j with j 6= i have the same endpoint in Vi. Together
this means that the set of edges corresponding to the text mapped to the letters
Ei,j forms a k-clique of G.

This completes the construction of t and p. Clearly, t and p can be constructed
from G and k in fpt-time (even polynomial time). Furthermore, because #Σt =
(k2)+ k+2, |#Σp| = (k2)+ k+2, condition (C1) is satisfied. To show the remaining
condition (C2) we need the following intermediate lemmas.

Lemma 14 If G has a k-clique then p GF/GP-matches t using a function f with

maxp∈Σp
|f(p)| ≤ 2.

Proof Because every GP-matching is also a GF-matching, it is sufficient to show
that p GP-matches to t.

Let {v1h1
, . . . , vkhk

} be the vertices and { ei,j
hi,j

| 1 ≤ i < j ≤ k } be the edges of a

k-clique of G with 1 ≤ hj ≤ n and 1 ≤ hi,j ≤ m for every i and j with 1 ≤ i < j ≤ k.
We first give the GP-matching function f for the letters in Σp that occur more

than once in p as follows: We set f(#) = #, f(Ei,j) = e
i,j
hi,j

, and f(Ai) = #hi
, for

every i and j with 1 ≤ i < j ≤ k. Informally, we will map the remaining letters in
Σp to substrings of t of length between 1 and 2 in such a way that the occurrences
of the letters #, Ei,j , and Ai are placed over the right positions in the text t. More
formally, we define f for the remaining letters in Σp as follows:

– For every 1 ≤ i < j ≤ k, we define f(Li,j
x) in such a way that |f(Li,j

x)| = 2 for
every 1 ≤ x ≤ hi,j − 1 and |f(Li,j

x)| = 1 for every hi,j − 1 < x ≤ m− 1.

– For every 1 ≤ i < j ≤ k, we define f(Ri,j
x) in such a way that |f(Ri,j

x)| = 1 for
every 1 ≤ x ≤ hi,j + 1 and |f(Li,j

x)| = 2 for every hi,j + 1 < x ≤ m− 1.

– For every 1 ≤ i, j ≤ k with i 6= j, we define f(Li,j
x) in such a way that f(Li,j

x) = 2
for every 1 ≤ x ≤ s−1, where s is the position of ei,j

hi,j
in t(vhi

, j) and f(Li,j
x) = 1

for every s < x ≤ n− 1.
– For every 1 ≤ i, j ≤ k with i 6= j, we define f(Ri,j

x) in such a way that f(Ri,j
x) =

1 for every 1 ≤ x ≤ s + 1, where s is the position of e
i,j
hi,j

in t(vhi
, j) and

f(Ri,j
x) = 1 for every s+ 1 < x ≤ n− 1.

22 Sebastian Ordyniak, Alexandru Popa

– For every 1 ≤ i ≤ k, we define f(Li
l) in such a way that |f(Li

l)| = 2 for every 1 ≤
l ≤ s− 1, where s is position of #hi

in the substring #1t(v
i
1)#1 · · ·#nt(v

i
n)#n

of t and |f(Li
x)| = 1 for every s < x ≤ q.

– For every 1 ≤ i ≤ k, we define f(Ri
x) in such a way that |f(Ri

x)| = 1 for every 1 ≤
x ≤ s+1, where s is position of #hi

in the substring #1t(v
i
1)#1 · · ·#nt(v

i
n)#n

of t and |f(Ri
x)| = 2 for every s+ 1 < x ≤ q.

Observe because f maps each of the letters L
i,j
x , Ri,j

x , Li,j
x , Ri,j

x , Li
x, and R

i
x to a

substring of t containing a letter that occurs only once in t, i.e., the letters l
i,j
x ,

r
i,j
x , lv,jx , rv,jx , li, and ri, respectively, and the mappings for #, Ei,j , and Ai are
obviously pairwise distinct, we obtain that f is injective. It is now straightforward
to check that f GP-matches p to t and maxp∈Σp

|f(p)| ≤ 2, as required. ⊓⊔

Lemma 15 If p GF/GP-matches t, then G has a k-clique.

Proof Because every GP-matching is also a GF-matching, it is sufficient to show
the statement given a GF-matching of p to t.

Let f be the function that GF-matches p to t. We first show that f(#) = #.
Suppose for a contradiction that f(#) 6= # Because t and p start with ## it
follows that f(#) is a string that starts with ##. However, t does not contain any
other occurrence of the string ## and hence the remaining occurrences of # in p

cannot be matched by f .
Because t and p have the same number of occurrences of # , it follows that the

i-th occurrences of # in p has to be mapped to the i-th occurrence of # in t. We
obtain that:

(1) for every i, j with 1 ≤ i < j ≤ k, the substring p(i, j) of p has to be mapped to
the substring t(i, j) of t.

(2) for every i with 1 ≤ i ≤ k, the substring:

enu(Li, q)Aipe(i, 1) · · ·pe(i, k)Aienu(R
i, q)

of p has to be mapped to the substring:

enu(li, q)#1t(v
i
1)#1 · · ·#nt(v

i
n)#nenu(r

i, q)

of t.

Because for every i with 1 ≤ i ≤ k the letters #j are the only letters that occur
more than once in the substring enu(li, q)#1t(v

i
1)#1 · · ·#nt(v

i
n)#nenu(r

i, q) of t,
we obtain that Ai has to be mapped to #j for some j with 1 ≤ j ≤ n. Consequently:

(3) for every i with 1 ≤ i ≤ k, the substring Aipe(i, 1) · · ·pe(i, k)Ai of p has to be
mapped to a substring #jt(v

i
j)#j of t for some j with 1 ≤ j ≤ n.

It follows from (1) that for every i, j with 1 ≤ i < j ≤ k, the function f maps Ei,j
to edges between Vi and Vj . We show next that f maps Ei,j to exactly one edge
between Vi and Vj . Assume not, then there are two edges mapped to Ei,j via f

that have different endpoints in Vi or Vj . W.l.o.g. suppose that the former is the
case, i.e., there are two edges e and e′ contained in f(Ei,j) with distinct endpoints
in Vi and let x with 1 ≤ x ≤ n be such that according to (3) the substring
Aipe(i, 1) · · ·pe(i, k)Ai of p is mapped to the substring #xt(v

i
x)#x of t. Because

#xt(v
i
x)#x contains only edges incident to the vertex vix in Vi one of the two edges e

or e′ is not contained in #xt(v
i
x)#x and hence the substring Aipe(i, 1) · · ·pe(i, k)Ai

A Parameterized Study of Maximum Generalized Pattern Matching Problems 23

(which contains Ei,j) cannot be mapped to #xt(v
i
x)#x contradicting (3). This

shows that f maps Ei,j to exactly one edge between Vi and Vj . Because of (3) it
follows that for every i with 1 ≤ i ≤ k, it holds that the edges mapped to any Ey,z
with 1 ≤ y < z ≤ k such that y = i or z = i have the same endpoint in Vi. Hence,
the set of edges mapped to all the letters Ei,j for 1 ≤ i < j ≤ k form a k-clique of
G. ⊓⊔

Condition (C2) can now be obtained as follows: Lemma 14 shows the implication
from S3 to S2, Lemma 15 shows the implication from S1 to S3, and the implication
from S2 to S1 is trivially satisfied. This concludes the proof of Theorem 7.

Acknowledgments

Sebastian Ordyniak acknowledges support from the Employment of Newly Grad-
uated Doctors of Science for Scientific Excellence (CZ.1.07/2.3.00/30.0009).

References

1. Amihood Amir and Igor Nor. Generalized function matching. Journal of Discrete Algo-

rithms, 5(3):514–523, 2007.
2. Dana Angluin. Finding patterns common to a set of strings (extended abstract). In

Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April 30 -

May 2, 1979, Atlanta, Georgia, USA, pages 130–141, 1979.
3. Dana Angluin. Finding patterns common to a set of strings. Journal of Computer and

System Sciences, 21(1):46 – 62, 1980.
4. Raphaël Clifford, Aram W. Harrow, Alexandru Popa, and Benjamin Sach. Generalised

matching. In Jussi Karlgren, Jorma Tarhio, and Heikki Hyyrö, editors, String Process-

ing and Information Retrieval, 16th International Symposium, SPIRE 2009, Saariselkä,

Finland, August 25-27, 2009, Proceedings, volume 5721 of Lecture Notes in Computer

Science, pages 295–301. Springer, 2009.
5. Raphaël Clifford and Alexandru Popa. (In)approximability results for pattern matching

problems. In Jan Holub and Jan Zdárek, editors, Proceedings of the Prague Stringology

Conference 2010, Prague, Czech Republic, August 30 - September 1, 2010, pages 52–
62. Prague Stringology Club, Department of Theoretical Computer Science, Faculty of
Information Technology, Czech Technical University in Prague, 2010.

6. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer Verlag, New York, 1999.

7. Andrzej Ehrenfreucht and Grzegorz Rozenberg. Finding a homomorphism between two
words in np-complete. Information Processing Letters, 9(2):86 – 88, 1979.

8. Henning Fernau and Markus L. Schmid. Pattern matching with variables: A multivariate
complexity analysis. Information and Computation, 2015.

9. Henning Fernau, Markus L. Schmid, and Yngve Villanger. On the parameterised complex-
ity of string morphism problems. In Anil Seth and Nisheeth K. Vishnoi, editors, IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer

Science, FSTTCS 2013, December 12-14, 2013, Guwahati, India, volume 24 of LIPIcs,
pages 55–66. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

10. Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts
in Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

11. Dominik D. Freydenberger, Daniel Reidenbach, and Johannes C. Schneider. Unambiguous
morphic images of strings. International Journal of Foundations of Computer Science,
17(3):601–628, 2006.

12. Tao Jiang, Efim Kinber, Arto Salomaa, Kai Salomaa, and Sheng Yu. Pattern languages
with and without erasing. International Journal of Computer Mathematics, 50(3-4):147–
163, 1994.

24 Sebastian Ordyniak, Alexandru Popa

13. Alexandru Mateescu and Arto Salomaa. Finite degrees of ambiguity in pattern languages.
Informatique Théorique et Applications, 28(3-4):233–253, 1994.

14. Yen Kaow Ng and Takeshi Shinohara. Developments from enquiries into the learnability
of the pattern languages from positive data. Theoretical Computer Science, 397(13):150
– 165, 2008. Forty Years of Inductive Inference: Dedicated to the 60th Birthday of Rolf
Wiehagen.

15. Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. Journal of Computer and

System Sciences, 67(4):757–771, 2003.
16. Daniel Reidenbach. A non-learnable class of e-pattern languages. Theoretical Computer

Science, 350(1):91 – 102, 2006.
17. Daniel Reidenbach. Discontinuities in pattern inference. Theoretical Computer Science,

397(13):166 – 193, 2008. Forty Years of Inductive Inference: Dedicated to the 60th Birthday
of Rolf Wiehagen.

18. Daniel Reidenbach and Markus L. Schmid. Patterns with bounded treewidth. Information

and Computation, 239:87–99, 2014.
19. Markus L. Schmid. A note on the complexity of matching patterns with variables. Infor-

mation Processing Letters, 113(19–21):729–733, 2013.
20. Takeshi Shinohara. Polynomial time inference of extended regular pattern languages.

In Eiichi Goto, Koichi Furukawa, Reiji Nakajima, Ikuo Nakata, and Akinori Yonezawa,
editors, RIMS Symposia on Software Science and Engineering, volume 147 of Lecture

Notes in Computer Science, pages 115–127. Springer Berlin Heidelberg, 1983.

