5,431 research outputs found
Mobility and Saturation Velocity in Graphene on SiO2
We examine mobility and saturation velocity in graphene on SiO2 above room
temperature (300-500 K) and at high fields (~1 V/um). Data are analyzed with
practical models including gated carriers, thermal generation, "puddle" charge,
and Joule heating. Both mobility and saturation velocity decrease with rising
temperature above 300 K, and with rising carrier density above 2x10^12 cm^-2.
Saturation velocity is >3x10^7 cm/s at low carrier density, and remains greater
than in Si up to 1.2x10^13 cm^-2. Transport appears primarily limited by the
SiO2 substrate, but results suggest intrinsic graphene saturation velocity
could be more than twice that observed here
New -Matrices for Lie Bialgebra Structures over Polynomials
For a finite dimensional simple complex Lie algebra , Lie
bialgebra structures on and were
classified by Montaner, Stolin and Zelmanov. In our paper, we provide an
explicit algorithm to produce -matrices which correspond to Lie bialgebra
structures over polynomials
Strongly Tunable Anisotropic Thermal Transport in MoS2 by Strain and Lithium Intercalation: First--Principles Calculations
The possibility of tuning the vibrational properties and the thermal
conductivity of layered van der Waals materials either chemically or
mechanically paves the way to significant advances in nanoscale heat
management. Using first-principles calculations we investigate the modulation
of heat transport in MoS2 by lithium intercalation and cross-plane strain. We
find that both the in-plane and cross-plane thermal conductivity (kr, kz) of
MoS2 are extremely sensitive to both strain and electrochemical intercalation.
Combining lithium intercalation and strain, the in-plane and cross-plane
thermal conductivity can be tuned over one and two orders of magnitude,
respectively. Furthermore, since kr and kz respond in different ways to
intercalation and strain, the thermal conductivity anisotropy can be modulated
by two orders of magnitude. The underlying mechanisms for such large tunability
of the anisotropic thermal conductivity of \Mos are explored by computing and
analyzing the dispersion relations, group velocities, relaxation times and mean
free paths of phonons. Since both intercalation and strain can be applied
reversibly, their stark effect on thermal conductivity can be exploited to
design novel phononic devices, as well as for thermal management in MoS2-based
electronic and optoelectronic systems
Interference in interacting quantum dots with spin
We study spectral and transport properties of interacting quantum dots with
spin. Two particular model systems are investigated: Lateral multilevel and two
parallel quantum dots. In both cases different paths through the system can
give rise to interference. We demonstrate that this strengthens the multilevel
Kondo effect for which a simple two-stage mechanism is proposed. In parallel
dots we show under which conditions the peak of an interference-induced orbital
Kondo effect can be split.Comment: 8 pages, 8 figure
High-Field Electrical and Thermal Transport in Suspended Graphene
We study the intrinsic transport properties of suspended graphene devices at
high fields (>1 V/um) and high temperatures (>1000 K). Across 15 samples, we
find peak (average) saturation velocity of 3.6x10^7 cm/s (1.7x10^7 cm/s), and
peak (average) thermal conductivity of 530 W/m/K (310 W/m/K), at 1000 K. The
saturation velocity is 2-4 times and the thermal conductivity 10-17 times
greater than in silicon at such elevated temperatures. However, the thermal
conductivity shows a steeper decrease at high temperature than in graphite,
consistent with stronger effects of second-order three-phonon scattering. Our
analysis of sample-to-sample variation suggests the behavior of "cleaner"
devices most closely approaches the intrinsic high-field properties of
graphene. This study reveals key features of charge and heat flow in graphene
up to device breakdown at ~2230 K in vacuum, highlighting remaining unknowns
under extreme operating conditions
Avalanche-Induced Current Enhancement in Semiconducting Carbon Nanotubes
Semiconducting carbon nanotubes under high electric field stress (~10 V/um)
display a striking, exponential current increase due to avalanche generation of
free electrons and holes. Unlike in other materials, the avalanche process in
such 1D quantum wires involves access to the third sub-band, is insensitive to
temperature, but strongly dependent on diameter ~exp(-1/d^2). Comparison with a
theoretical model yields a novel approach to obtain the inelastic optical
phonon emission length, L_OP,ems ~ 15d nm. The combined results underscore the
importance of multi-band transport in 1D molecular wires
- …
