3,964 research outputs found

    Model for hypernucleus production in heavy ion collisions

    Full text link
    We estimate the production cross sections of hypernuclei in projectile like fragment (PLF) in heavy ion collisions. The discussed scenario for the formation cross section of hypernucleus is: (a) Lambda particles are produced in the participant region but have a considerable rapidity spread and (b) Lambda with rapidity close to that of the PLF and total momentum (in the rest system of PLF) up to Fermi motion can then be trapped and produce hypernuclei. The process (a) is considered here within Heavy Ion Jet Interacting Generator HIJING-BBbar model and the process (b) in the canonical thermodynamic model (CTM). We estimate the production cross-sections for light hypernuclei for C + C at 3.7 GeV total nucleon-nucleon center of mass energy and for Ne+Ne and Ar+Ar collisions at 5.0 GeV. By taking into account explicitly the impact parameter dependence of the colliding systems, it is found that the cross section is different from that predicted by the coalescence model and large discrepancy is obtained for 6_He and 9_Be hypernuclei.Comment: 9 pages, 4 figures, 3 tables, revtex4, added reference

    Gas Geochemistry and Fractionation Processes in Florina Basin, Greece

    Get PDF
    Florina Basin is located in northern Greece, close to Mount Voras where the volcanic activity of Late Messinian age began. In the area, many CO2-rich gas emissions are present as a bubbling free-phase in groundwater (both springs and wells) and soil gases. Volcanism along with the geological and geodynamic regime of the basin, created the ideal conditions for CO2 accumulation in vertically stacked reservoirs. One of these, industrially exploited by the company Air Liquide Greece, produces 30,000 t/a of CO2. Results show that CO2 concentrations in the gases of Florina can arrive up to 99.8% and are mostly above 90%. Moreover, C-isotope composition (-2.1 to + 0.3 h vs. VPDB) indicates a mixed mantle-limestone origin for CO2, while He isotope composition (R/RA from 0.21 to 1.20) shows a prevailing crustal origin with an up to 15% mantle contribution. Helium and methane, with concentrations spanning over three orders of magnitude, show a positive correlation and a consequent high variability of He/CO2 and CH4/CO2 ratios. This variability can be attributed to the interaction of the uprising gases with groundwater that chemically fractionates them due to their different solubility. Based on the CO2, CH4 and He concentrations, gas samples collected in the basin can be divided in 3 groups: a) deep reservoir gases, b) enriched in less soluble gases and c) depleted in less soluble gases. The first group consists of gas samples collected at the Air Liquide extraction wells, which tap a 300m deep reservoir. This group can be considered as the least affected by fractionation processes due to interaction with groundwater. The gases of the second group due to their interaction with shallower unsaturated aquifers, become progressively enriched in less soluble gases (He and CH4). Finally, the third group represents residual gas phases after extensive degassing of the groundwater during its hydrological pathway

    Charge transfer complexes and radical cation salts of chiral methylated organosulfur donors

    Get PDF
    The single crystal X-ray structure of the all-axial conformer of the (R,R,R,R) enantiomer of the chiral donor tetramethyl-BEDT-TTF (TM-BEDT-TTF) was described and compared to the all-equatorial conformer. (S,S,S,S)-Tetramethyl-BEDT-TTF formed crystalline 1 : 1 complexes with TCNQ and TCNQ-F4, as well as a THF solvate of the TCNQ complex. Donors bis((2S,4S)-pentane-2,4-dithio)tetrathiafulvalene and (ethylenedithio)((2S,4S)-pentane-2,4-dithio)tetrathiafulvalene, which contain seven-membered rings bearing chirally oriented methyl groups, only formed complexes with TCNQ-F4. The TCNQ-F4 complexes contain planar organosulfur systems, in contrast to the TCNQ complexes in which there is minimal charge transfer. A variety of crystal packing modes were observed. Electrocrystallization experiments with both enantiomers and the racemic form of tetramethyl-BEDT-TTF afforded mixed valence radical cation salts with the AsF6 and SbF6 anions formulated as (TM-BEDT-TTF)2XF6 (X = As, Sb). Electrical conductivity was only found in one charge transfer complex, while the radical cation salts are all semiconducting
    • …
    corecore