81 research outputs found
An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow
International audienceIn this paper we derive an a posteriori error estimate for the numerical approximation of the solution of a system modeling the flow of two incompressible and immiscible fluids in a porous medium. We take into account the capillary pressure, which leads to a coupled system of two equations: parabolic and elliptic. The parabolic equation may become degenerate, i.e., the nonlinear diffusion coefficient may vanish over regions that are not known a priori. We first show that, under appropriate assumptions, the energy-type-norm differences between the exact and the approximate nonwetting phase saturations, the global pressures, and the Kirchhoff transforms of the nonwetting phase saturations can be bounded by the dual norm of the residuals. We then bound the dual norm of the residuals by fully computable a posteriori estimators. Our analysis covers a large class of conforming, vertex-centered finite volume-type discretizations with fully implicit time stepping. As an example, we focus here on two approaches: a ''mathematical'' scheme derived from the weak formulation, and a phase-by-phase upstream weighting ''engineering'' scheme. Finally, we show how the different error components, namely the space discretization error, the time discretization error, the linearization error, the algebraic solver error, and the quadrature error can be distinguished and used for making the calculations efficient
Iterative schemes for surfactant transport in porous media
In this work, we consider the transport of a surfactant in variably saturated porous media. The water flow is modelled by the Richards equations and it is fully coupled with the transport equation for the surfactant. Three linearization techniques are discussed: the Newton method, the modified Picard, and the L-scheme. Based on these, monolithic and splitting schemes are proposed and their convergence is analyzed. The performance of these schemes is illustrated on five numerical examples. For these examples, the number of iterations and the condition numbers of the linear systems emerging in each iteration are presented.publishedVersio
A linear domain decomposition method for partially saturated flow in porous media
The Richards equation is a nonlinear parabolic equation that is commonly used
for modelling saturated/unsaturated flow in porous media. We assume that the
medium occupies a bounded Lipschitz domain partitioned into two disjoint
subdomains separated by a fixed interface . This leads to two problems
defined on the subdomains which are coupled through conditions expressing flux
and pressure continuity at . After an Euler implicit discretisation of
the resulting nonlinear subproblems a linear iterative (-type) domain
decomposition scheme is proposed. The convergence of the scheme is proved
rigorously. In the last part we present numerical results that are in line with
the theoretical finding, in particular the unconditional convergence of the
scheme. We further compare the scheme to other approaches not making use of a
domain decomposition. Namely, we compare to a Newton and a Picard scheme. We
show that the proposed scheme is more stable than the Newton scheme while
remaining comparable in computational time, even if no parallelisation is being
adopted. Finally we present a parametric study that can be used to optimize the
proposed scheme.Comment: 34 pages, 13 figures, 7 table
- …