81 research outputs found

    An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow

    Get PDF
    International audienceIn this paper we derive an a posteriori error estimate for the numerical approximation of the solution of a system modeling the flow of two incompressible and immiscible fluids in a porous medium. We take into account the capillary pressure, which leads to a coupled system of two equations: parabolic and elliptic. The parabolic equation may become degenerate, i.e., the nonlinear diffusion coefficient may vanish over regions that are not known a priori. We first show that, under appropriate assumptions, the energy-type-norm differences between the exact and the approximate nonwetting phase saturations, the global pressures, and the Kirchhoff transforms of the nonwetting phase saturations can be bounded by the dual norm of the residuals. We then bound the dual norm of the residuals by fully computable a posteriori estimators. Our analysis covers a large class of conforming, vertex-centered finite volume-type discretizations with fully implicit time stepping. As an example, we focus here on two approaches: a ''mathematical'' scheme derived from the weak formulation, and a phase-by-phase upstream weighting ''engineering'' scheme. Finally, we show how the different error components, namely the space discretization error, the time discretization error, the linearization error, the algebraic solver error, and the quadrature error can be distinguished and used for making the calculations efficient

    Iterative schemes for surfactant transport in porous media

    Get PDF
    In this work, we consider the transport of a surfactant in variably saturated porous media. The water flow is modelled by the Richards equations and it is fully coupled with the transport equation for the surfactant. Three linearization techniques are discussed: the Newton method, the modified Picard, and the L-scheme. Based on these, monolithic and splitting schemes are proposed and their convergence is analyzed. The performance of these schemes is illustrated on five numerical examples. For these examples, the number of iterations and the condition numbers of the linear systems emerging in each iteration are presented.publishedVersio

    A linear domain decomposition method for partially saturated flow in porous media

    Get PDF
    The Richards equation is a nonlinear parabolic equation that is commonly used for modelling saturated/unsaturated flow in porous media. We assume that the medium occupies a bounded Lipschitz domain partitioned into two disjoint subdomains separated by a fixed interface Γ\Gamma. This leads to two problems defined on the subdomains which are coupled through conditions expressing flux and pressure continuity at Γ\Gamma. After an Euler implicit discretisation of the resulting nonlinear subproblems a linear iterative (LL-type) domain decomposition scheme is proposed. The convergence of the scheme is proved rigorously. In the last part we present numerical results that are in line with the theoretical finding, in particular the unconditional convergence of the scheme. We further compare the scheme to other approaches not making use of a domain decomposition. Namely, we compare to a Newton and a Picard scheme. We show that the proposed scheme is more stable than the Newton scheme while remaining comparable in computational time, even if no parallelisation is being adopted. Finally we present a parametric study that can be used to optimize the proposed scheme.Comment: 34 pages, 13 figures, 7 table
    • …
    corecore