126 research outputs found

    Tunable ohmic environment using Josephson junction chains

    Full text link
    We propose a scheme to implement a tunable, wide frequency-band dissipative environment using a double chain of Josephson junctions. The two parallel chains consist of identical SQUIDs, with magnetic-flux tunable inductance, coupled to each other at each node via a capacitance much larger than the junction capacitance. Thanks to this capacitive coupling, the system sustains electromagnetic modes with a wide frequency dispersion. The internal quality factor of the modes is maintained as high as possible, and the damping is introduced by a uniform coupling of the modes to a transmission line, itself connected to an amplification and readout circuit. For sufficiently long chains, containing several thousands of junctions, the resulting admittance is a smooth function versus frequency in the microwave domain, and its effective dissipation can be continuously monitored by recording the emitted radiation in the transmission line. We show that by varying in-situ the SQUIDs' inductance, the double chain can operate as tunable ohmic resistor in a frequency band spanning up to one GHz, with a resistance that can be swept through values comparable to the resistance quantum R_q = (h/4e^2) ~ 6.5 k{\Omega}. We argue that the circuit complexity is within reach using current Josephson junction technology.Comment: 11 pages, 9 figure

    Steps towards current metrology

    Get PDF

    Inductively shunted transmon qubit with tunable transverse and longitudinal coupling

    Full text link
    We present the design of an inductively shunted transmon qubit with flux-tunable coupling to an embedded harmonic mode. This circuit construction offers the possibility to flux-choose between pure transverse and pure longitudinal coupling, that is coupling to the σx\sigma_x or σz\sigma_z degree of freedom of the qubit. While transverse coupling is the coupling type that is most commonly used for superconducting qubits, the inherently different longitudinal coupling has some remarkable advantages both for readout and for the scalability of a circuit. Being able to choose between both kinds of coupling in the same circuit provides the flexibility to use one for coupling to the next qubit and one for readout, or vice versa. We provide a detailed analysis of the system's behavior using realistic parameters, along with a proposal for the physical implementation of a prototype device.Comment: 14 pages, 14 figure

    Mixed convection of the stagnation-point flow towards a stretching vertical permeable sheet

    Get PDF
    An analysis was done for the steady two-dimensional stagnation-point mixed convection flow of an incompressible viscous fluid towards a stretching vertical permeable sheet in its own plane. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation-point. Two equal and opposite forces are impulsively applied along the x-axis so that the wall is stretched, keeping the origin fixed in a viscous fluid of constant ambient temperature. The transformed boundary layer equations were solved numerically for some values of the parameters considered using an implicit finite difference scheme known as the Keller-box method. Flow and heat transfer characteristics were analyzed and discussed. Both cases of the assisting and opposing flows were considered and it was found that dual solutions exist for the opposing flow, whereas a unique solution resulted for the assisting flow

    Implementation of low-loss superinductances for quantum circuits

    Full text link
    The simultaneous suppression of charge fluctuations and offsets is crucial for preserving quantum coherence in devices exploiting large quantum fluctuations of the superconducting phase. This requires an environment with both extremely low DC and high RF impedance. Such an environment is provided by a superinductance, defined as a zero DC resistance inductance whose impedance exceeds the resistance quantum RQ=h/(2e)26.5 kΩR_Q = h/(2e)^2 \simeq 6.5\ \mathrm{k\Omega} at frequencies of interest (1 - 10 GHz). In addition, the superinductance must have as little dissipation as possible, and possess a self-resonant frequency well above frequencies of interest. The kinetic inductance of an array of Josephson junctions is an ideal candidate to implement the superinductance provided its phase slip rate is sufficiently low. We successfully implemented such an array using large Josephson junctions (EJ>>ECE_J >> E_C), and measured internal losses less than 20 ppm, self-resonant frequencies greater than 10 GHz, and phase slip rates less than 1 mHz

    Solomon equations for qubit and two-level systems

    Full text link
    We model and measure the combined relaxation of a qubit, a.k.a. central spin, coupled to a discrete two-level system (TLS) environment. We present a derivation of the Solomon equations starting from a general Lindblad equation for the qubit and an arbitrary number of TLSs. If the TLSs are much longer lived than the qubit, the relaxation becomes non-exponential. In the limit of large numbers of TLSs the populations are likely to follow a power law, which we illustrate by measuring the relaxation of a superconducting fluxonium qubit. Moreover, we show that the Solomon equations predict non-Poissonian quantum jump statistics, which we confirm experimentally

    Magnetohydrodynamics flow past a moving vertical thin needle in a nanofluid with stability analysis

    Get PDF
    In this study, we intend to present the dynamics of a system based on the model of convective heat and mass transfer in magnetohydrodynamics (MHD) flow past a moving vertical thin needle in nanofluid. The problem is formulated in mathematical form by using Buongiorno’s model with the modified boundary condition. The transformed boundary layer ordinary differential equations are solved numerically using the bvp4c function in MATLAB software. The effects of the involved parameters, including, Brownian motion, thermophoresis, magnetic field, mixed convection, needle size and velocity ratio parameter on the flow, heat and mass transfer coefficients are analyzed. The numerical results obtained for the skin friction coefficients, local Nusselt number and local Sherwood number, as well as the velocity, temperature and concentration profiles are graphically presented and have been discussed in detail. The study reveals that the dual solutions appear when the needle and the buoyancy forces oppose the direction of the fluid motion, and the range of the dual solutions existing depends largely on the needle size and magnetic parameter. The presence of the magnetic field in this model reduces the coefficient of the skin friction and heat transfer, while it increases the coefficient of the mass transfer on the needle surface. A stability analysis has been performed to identify which of the solutions obtained are linearly stable and physically relevant. It is noticed that the upper branch solutions are stable, while the lower branch solutions are not
    corecore