4,089 research outputs found

    Secondary and compound concentrators for parabolic dish solar thermal power systems

    Get PDF
    A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to e worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three element geometries. Folding the optical path may be most useful in systems that provide process heat

    Effect of strain rate on the yielding mechanism of amorphous metal foam

    Get PDF
    Stochastic amorphous Pd_(43)Ni_(10)Cu_(27)P_(20) foams were tested in quasistatic and dynamic loading. The strength/porosity relations show distinct slopes for the two loading conditions, suggesting a strain-rate-induced change in the foam yielding mechanism. The strength/porosity correlation of the dynamic test data along with microscopy assessments support that dynamic foam yielding is dominated by plasticity rather than elastic buckling, the mechanism previously identified to control quasistatic yielding. The strain-rate-induced shift in the foam yielding mechanism is attributed to the rate of loading approaching the rate of sound wave propagation across intracellular membranes, thereby suppressing elastic buckling and promoting plastic yielding

    Radio Astronomy

    Get PDF
    Contains reports on two research projects.California Institute of Technology (Contract 952568)U. S. Air Force Air Force Systems Command (Contract F33615-72-C-2129

    Radio Astronomy

    Get PDF
    Contains reports on two research projecst.California Institute of Technology Contract 952568Sloan Fund for Basic Research (M.I. T. Grant 241

    Glasses in hard spheres with short-range attraction

    Full text link
    We report a detailed experimental study of the structure and dynamics of glassy states in hard spheres with short-range attraction. The system is a suspension of nearly-hard-sphere colloidal particles and non-adsorbing linear polymer which induces a depletion attraction between the particles. Observation of crystallization reveals a re-entrant glass transition. Static light scattering shows a continuous change in the static structure factors upon increasing attraction. Dynamic light scattering results, which cover 11 orders of magnitude in time, are consistent with the existence of two distinct kinds of glasses, those dominated by inter-particle repulsion and caging, and those dominated by attraction. Samples close to the `A3 point' predicted by mode coupling theory for such systems show very slow, logarithmic dynamics.Comment: 22 pages, 18 figure

    A cluster mode-coupling approach to weak gelation in attractive colloids

    Full text link
    Mode-coupling theory (MCT) predicts arrest of colloids in terms of their volume fraction, and the range and depth of the interparticle attraction. We discuss how effective values of these parameters evolve under cluster aggregation. We argue that weak gelation in colloids can be idealized as a two-stage ergodicity breaking: first at short scales (approximated by the bare MCT) and then at larger scales (governed by MCT applied to clusters). The competition between arrest and phase separation is considered in relation to recent experiments. We predict a long-lived `semi-ergodic' phase of mobile clusters, showing logarithmic relaxation close to the gel line.Comment: 4 pages, 3 figure

    XML profile for distributed real time systems

    Get PDF
    In this paper. we describe a XML based profile for modeling the semantics of real time systems. We aim to use Real Time Markup Language (RTML) to provide a comprehensive description oftemporal properties for the use in distributed systems communication RTML is derived from a number of specifications including OMG UML Profile in Schedulability. Performance. and Time. In this paper. we discuss the technique that was used to develop RTML semantic model and the important concepts in RTML

    XML descriptor based approach for real time data messaging

    Get PDF
    This paper presents an overview of the Real Time Markup Language (RTML). RTML is an XML profile which provides the syntactic representation for describing the semantics of real time data for exchange over distributed networked real time systems. For the basis of interoperability, this profile is described in the XML Schema language. This paper describes the background of this work and shows how the vocabularies are developed, and how it derives the extensibility of XML Schema in aiding the definition of data in real time systems in order to achieve the goal of interoperability
    • …
    corecore