
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195636312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

XML Profile for distributed real time systems

Polly M. Poon1, Tharam S Dillon2, Elizabeth Chang2, Ling Feng3
1Faculty of Information Technology, UTS,

Sydney, Australia
polly@it.uts.edu.au

2Digital Ecosystems and Business Intelligence Institute,

Curtin University of Technology,
Perth, Australia

{Tharam.Dillon, Elizabeth.Chang}@cbs.curtin.edu.au

3 Database Group,
Dept. of Computer Science & Technology,

Tsinghua University,
Beijing 100084, China,

fengling@tsinghua.edu.cn

Abstract

In this paper, we describe a XML based profile for

modeling the semantics of real time systems. We aim to
use Real Time Markup Language (RTML) to provide a
comprehensive description of temporal properties for the
use in distributed systems communication. RTML is
derived from a number of specifications including OMG
UML Profile in Schedulability, Performance, and Time. In
this paper, we discuss the technique that was used to
develop RTML semantic model and the important
concepts in RTML.

1. Introduction

XML has been generally accepted as a suitable
medium for data representation format for distributed
systems. Currently, there are existing standards that
models some of the real time properties. However, to
effectively utilize the benefits of XML in distributed
systems, there must be a consistent schema to capture the
important concepts of real time systems.

In order to represent the semantics of real time
properties, the schema must meet the following
requirements:

1. Ensure the uniformity of the constraints
understood by applications which adopts it.

2. Address the properties that are crucial to each
systems within the communication channel
(e.g. Timing properties, system description,
QoS)

3. Effective method that converts data into a form
that can be globally readable and
understandable (E.g. Handling and
descriptions of special data types)

The semantic markup for the real time systems also

addresses the following issues:
• Timeliness requirements;
• Resources descriptions (e.g. hardware or software

applications);
• Quality of service;
• Schedule of tasks;
• Other functional issues that must be addressed.

In the next section, we will describe the

interoperability requirements for data messaging and data
storage for XML messaging.

2. Interoperability requirements

One of the key factors of data exchange in the
distributed network is consistency. This includes
definition of interface and data definition, message format
and data storage mechanism. It is important to provide a
consistent standard to enable the integration of services
[3]. We are particularly concerned with the following
features that characterize information dissemination in
distributed systems:

1. Collection and transmission of data from sensors
to data concentrators

11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC)

978-0-7695-3132-8/08 $25.00 © 2008 IEEE
DOI 10.1109/ISORC.2008.62

570

2. Storage of data at several levels and different
databases that must interoperate with each other. Some
systems, for example advanced systems which run in
power plants [1], one requires integration of real time
data, or historic data to make intelligent analysis and
allow the system to run predictably. This could require the
integration between archive data and operating real time
data. Another example would be the implementation of
communication between segments of networks with the
use of management agent, where messages are exchanged
by agent on behalf of network stations.

To achieve this one requires a consistent specification

of the data definitions to ensure data integrity and enhance
the interoperability among heterogeneous data sources, as
depicted in Figure 1. This requires the followings:

a) A format that is widely accepted, platform
independent which facilitate data exchange among
different data sources

b) A suitable mechanism for storing ‘annotated’
data that has clearly defined semantics.

Figure 1 Distributed Communication using

XML
3. Related work

A significant number of standards have been developed
targets the service integration between distributed real
time systems. These can be generally classified into
distributed component technologies and protocol design.
The former includes the advances with J2EE Web Service
support or .NET web service framework.

Earlier work carried out the study of formalism for
distributed real time embedded system processes which
were based on Algebraic and set based schemes such as Z
notation [2], and graphical representations such as state
based automata [3], state charts [4, 5], activity diagrams
[6, 7] and tabular based representations [3]. These
formalisms provide a discipline for software practitioners
to construct a description based representation of system
analysis and design and also provide a very formal, solid
groundwork for formalizing the requirements for DRE
systems. Yet, most of these FDL are created for
requirement analysis. The specification is not

accompanied by the concern for interoperability between
different system nor directly executable.

3.1Real Time XML (RT-XML)

RT-XML [8] is an XML based modeling language

which describes the distributed real-time multi-media
systems. It defines the time ordering, time constraints,
probabilistic behavior and qualitative description of a
multimedia stream with use of XML. It uses temporal
predicates to describe the condition for sets of object
based on defined conditions. It describes the application
level control over the delivery of multimedia services.
RT-XML provides a very descriptive model in defining
the temporal elements of multimedia systems; however,
we believe there should be a more general purpose profile
for use in real time systems.

3.2 Hierarchical QoS Markup Language (HQML)

Hierarchical QoS Markup Language [9] is a XML

representation of a distributed multimedia application to
be delivered across the Internet with QoS capability.
During runtime the HQML Executor translates the HQML
instance into a user defined data structure and works with
QoS Proxies which enable QoS related operations such as
end-to-end QoS negotiation, setup or enforcement. This
work is one of the earlier studies which investigate the use
of QoS on an IP network using DTDs as the data
constraint language.

3.3 Relationship with other standards: ITU X.641
model and OMG Profiles

In order to provide such a semantic model, it requires
expert knowledge of real time systems and fully
understands the constraints of the entities in real time
system. In our approach, we adopt existing standards that
describes the properties of real time systems.

RTML is derived from a opened specification from
Object Management Group, UML™ Profile for
Schedulability, Performance, and Time Specification from
Object Management Group (SPT) [10] and the UML™
Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms from Object
Management Group[11] (QoS Profile). We also
investigate the specification developed by ISO and ITU-T
document number X.641 Recommendation (ISO/IEC IS
13236) [6].

These standards have provided fundamental constructs
for RTML. This design time construct can be
complemented by realizing additional details to enrich the
description to the design elements defined in those
specifications. RTML provides a reference model for the
realization of abstract details.

571

4. RTML semantic components

RTML is divided into four main semantic components:

Time─It uses a metric based and time based

representation. To model the a sequence of time instant, a
metric based time instant or duration can be described in a
list of integer or double. Apart from the time granularity
extension from the XML Schema, we have also included
the illustration of timing mechanisms in our schema
which was represented in [12].
Resources─In order to illustrate the resource

representation, RTML provides a range of elements for
resource description including physical resources such as
device, CPU or communication devices; as well as
resource service such as application or services
description. Resources have a complementary relationship
with QoS in real time systems. In RTML, both elements
of QoS and Resources can be represented statically at the
local level where the description is attached to the sub-
element, or be linked dynamically through the description
contained within ResourceDescription and
QoSDescription as a header unit associated to the root
RTML instance. They are referenced using xPath within
the sub-elements with its unique identifier within the
message.
QoS─In [13, 14] we have presented the XML Profile

for QoS. At this stage we have provided a profile for
illustration of QoS concepts for Resource Instances
description.
Causality─The description of action execution and

resource service instance are described using the
CausalityModel. Essentially the CausalityModel is
modeled as a container to illustrate the actions involved in
a message interaction instance between two application
domains. The details of causality components will be
discussed in a later section.

5. Abstract elements

RTML uses a XML descriptor based approach.. The

modeling constructs in RTML are classified into three
corresponding descriptor types including Descriptor,
DescriptorMapper or DescriptorCategory. The use of
descriptors allows multi level abstraction. Ds and DMs are
further defined into a specialized modeling constructs
(E.g. QoS Descriptor, Resource Descriptor). This allows a
specialization of modeling elements in XML.

Descriptor: Descriptor defines the primitive concept in

RTML. It provides the syntactic and semantic descriptor
of modeling elements from class and transformed into
XML Schema using [15]. Example of Descriptors is
Device, Scenario, Latency, or Throughput. At an abstract
level, Descriptors are categorized into QoS Descriptor and

Resource Descriptor. These primarily describe the
concepts involve in real time system modeling.
DescriptorMapper: On the other hand provides the

details of the relationships between Descriptors, or with
other DescriptorMappers. A DescriptorMapper provide
the syntactic description of RTML in XML Schema, and
it also provides the semantics of relationship between
Descriptor elements. Example of a DM is
ConstraintContext in the aspect of QoS, which describe
how the constraints are applied in the context of QoS.
Both Constraint and Context are Descriptor elements,
putting these together give the description of the scenario
within which the constraints can be interpreted.
DescriptorCategory: It is used in RTML to provide a

logical grouping for Descriptor and DescriptorMapper.
DescriptorCategory is transformed in RTML using
<xs:group>. An example of usage is in the general QoS
descriptor package, which includes sub-packages such as
Performance, Throughput and Latency. Each of the sub-
packages is represented as a group in RTML.

6. The anatomy of RTML

6.1 Global Timing Mechanism

The timing mechanism is defined in RTML as a
global invariant in a RTML instance. The Timing
Mechanism in RTML provides the reference to the
location of a physical clock, and some of the offered QoS
attributes for the characterization of the timing device.
This allows the elements that are defined locally within
the RTML structure to reference it through the entire
hierarchy.

<GlobalTimingDevice id="ID000107">
 <Clock id="ID000108">
 <CurrentValue>
 <TimeInstant ClockRef="/@AA">2005-12-11T09:30:47-
05:00</TimeInstant>
 </CurrentValue>
 <ReferenceClock>

<ExternalClockURI>http://localhost/rtml/time</ExternalClockURI>
 </ReferenceClock>
 <Resolution unit="ns">1</Resolution>
 <Drift unit=’ns’>0.00001 </Drift>
 </Clock>
</GlobalTimingDevice>

Figure 2 Global Timing Mechanism

6.2 Domain Type

A domain specifies the details of the parties that
are involved in this interaction. It provides general details
of the network node including the description, simple
network specification and its location. As depict in Figure
3.

572

Figure 3 Domain in RTML
6.3 Extended time types

The built-in data and time types from XML
Schema are adequate to handle non-real time systems
need. However, the timing constraints are different for
most real time systems. In some cases the time granularity
could be as fine as nanoseconds whilst in others it could
be minutes or hours. In RTML, we have proposed a set of
timing data types to provide an extension that captures a
more specific timing characterization.

Generally the timing properties of RTML can be

classified as absolute time (Time Instant) and relative time
(duration). Time can be described using metric based
measurement with the augmentation of Time Unit to
specify its granularity. Each of the Instant is associated
with a Clock reference, as specified by the Global Clock
defined in the header of the RTML instance.
<xs:complexType name="TimeInstantType">
 <xs:choice>
 <xs:element name="TimeInstant">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:dateTime">
 <xs:attribute name="ClockRef"
type="rtml:xPathReferenceType"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="MetricTimeInstant"
type="rtml:MetricTimeInstantType"/>
 </xs:choice>
 <xs:attribute name="ClockRef" type="rtml:xPathReferenceType"/>
</xs:complexType>

Figure 3 Time Instant in RTML

Time duration can be represented in primitive XML
Schema duration time or using a metric based recurring
time interval.

<xs:complexType name="RecurringMetricDurationType">
 <xs:sequence>
 <xs:element name="Interval" maxOccurs="unbounded">
 <xs:simpleType>
 <xs:list itemType="rtml:DurationIncrementType"/>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="unit" type="rtml:TimeUnitType"/>
</xs:complexType>
<xs:simpleType name="RecurringTimeDurationType">
 <xs:list itemType="xs:time"/>
</xs:simpleType>

Figure 4 Recurring Metric Duration Type
RTML
<xs:complexType name="TimeIntervalType">
 <xs:choice>
 <xs:choice>
 <xs:element name="RecurringMetricTime"
type="rtml:RecurringMetricDurationType"/>
 <xs:element name="RecurringTime"
type="rtml:RecurringTimeDurationType"/>
 <xs:element name="RelativeDuration"
type="rtml:RelativeTimeType"/>

 <xs:element name="Duration" type="xs:duration"/>

</xs:choice>
<xs:choice>

 <xs:element name="MetricTime" type="rtml:MetricTimeType"/>
 <xs:element name="TimeInstant"
type="rtml:TimeInstantType"/>
 </xs:choice>
 </xs:choice>
</xs:complexType>

Figure 5 Time Interval Type

6.4 Resources and the services offered
Resource, in SPT, is defined as a run-time entity that can
offer services which can be characterize with the notion of
QoS. For instance, one can express the latency of the
network connection. One can reflect the dimension of the
inter-arrival time of the packet to reflect is available
capacity. The purpose of this is to quantify the variable
consumption and existence of the resources physical
underpinnings.

As described above the resource can offer services. In
RTML, resource services are expressed as a functionality
offer by the resource. This could be an event generated
from a Resource (E.g. Sensor, A monitoring unit in the
data collection server). A service could be described as an
event or an action execution, which consists of a number
of operation statements. In normal cases, an event should
be bounded by the time constraints which is validated at
runtime to ensure the time it was executed does not
exceed the allowed deadline. Once this time instant or
allowed duration is passed, the given condition for
execution will be changed based on the fact of whether it
is a hard or soft deadline. To describe the causality of the
deadline and action, we can represent it as follows:

Using Pre-condition P which specifies that if the current
time tc is less than the deadline t, then it implies that
module Q occurs.

 QPQP →∀ :,

6.6 Delay
Delay can be represented as an Event with a given period
of time to elapse from the time it is initiated to when the
event can be executed. For a given event predicate P,
clock N, delay is described as propositional statements:

PPNtP t→∈∀ :,
Where t is the firing delay that must elapse for P to hold
true.

6.7 Execution Time Range
In some cases, one cannot predict the exact firing time of
an event but merely a time zone when it will be executed.
To model this, one can use a range specified by its starting
instant and ending instant. Predicate P is valid as long as t
is within the range of tstart and tend.

573

QPtttttQPNt endstart →≤∧≤∃∈∀ :''',,

This provides the condition that for all the time instant of
clock N, if predicate P satisfies the condition that the
current time instant 't is within the range of tstart and tend,
then module Q can fire.

In RTML we do not explicitly describe how an event
should behave or the detailed course of execution. We
intend to allow flexibility here to be extended to an
external source of description. The declaration of event
elements can be referenced using an external namespace.
Similarly, Resource Service can also be characterized with
QoS in the same way as Resource. Here, we specify a
number of special events that are interesting to discuss.

6.8 Timeout
Particularly in real time systems, often events are
controlled by some timing device. For instance, a timer is
set to expire at a particular period of time and notifies the
corresponding object about the total elapse of time. The
purpose of a timeout event is to monitor some
continuously running process by periodically checking
some of the correctness of some parameters, to ensure its
normal working mode.

As specified in OMG SPT profile, a Timeout event is
associated to a Timer. It is assumed that a duration ttimeout is
the value which indicates the timeout, which 't is the time
instant when an event is fired and tcur is the current time.
We represent timeout in logical equivalence below:

QPtttt
ttttttNtQP

endstart

timeoutcurcurtimeout

→≤∧≤∧
∧≤∃∈∀

:)''(
))'((,,,',,

In other words, the concept of timeout is incorporated into
this statement such that if all the conditions of P are
satisfied and if the timing constraints which the current
time is less then or equal to the assigned firing time and
the duration of timeout, then it is legal to execute module
Q.

6.9 Polling
Polling is a process which checks the value of a particular
resource instances at the frequency of defined time
interval. This could be for example a monitoring module
sample the buffer in a memory space. A polling event
could also sample the external resource instance. There
are two types of polling process:
An event which interrupts the currently running process.
This interrupt could result in some routine service actions.
An event is execute when the particular resource instances
has completed all its process. In some cases, for example a
DB transaction, one would want to ensure the atomicity of
the process and therefore the poll only executes when the
transaction is completed.
This could be also represents in RTML as follows:

<MemPoll id="ID002345" name="RegularSpaceCheck" isInterrupt="1">
 <FiringInterval ClockRef="//GlobalClock">
 <RecurringMetricDuration unit="s">
 <Interval>0 2 4 5 6 11</Interval>
 </RecurringMetricDuration>
 </FiringInterval>
 <ResourceDescriptor>//DKSMem</ResourceDescriptor>
</MemPoll>

Figure 6 Polling in RTML

6.10 Causality Model
Causality is the most important concept in RTML as it
portrays the relationship between the independent
application domains through the use of various modeling
elements in SPT. The Causality Model in RTML, on the
other hand, presents a logical sequence of events in an
ordered fashion. The lifecycle of an interaction between
application domains is described in its corresponding
semantic representation through careful modeled
transformation into tagged elements. The relationship
between these events, are not only represents the order in
time but can be augmented with the constraint of time.
Special events require the control of time validity can be
described using timed based event elements (with optional
support of QoS).

The causality model is extracted from the SPT profile.
SPT has provided detailed description on the modeling
elements of this model. In RTML terms, these elements
are transformed into XML Schema constraints. Note here,
the importance is how these model elements are
transformed and then structured in RTML. Important
concepts are discussed in the following section.

6.11 Stimulus
A Stimulus is the result of the trigger of an event or
command generated from a remote application domain.
The description of Stimulus in RTML is described as an
element related to some Resources Descriptors. The
trigger of an event is described as a Stimulus Generation
Event which generates this Stimulus at a point in time. In
the context of real time systems, this could be the case
where a sensor network generates an alarm signal (as a
Stimulus) to notify that an unusual surge in temperature
has occurred. This signal is delivered to its target
application such as the monitoring unit, this Stimulus
Generation event would specifically address the receiver
by pointing to the Resources and interface methods
offered by the target component.

6.12 Scenario
A scenario is the result of the delivery of the stimulus
from the remote application domain to its target
application domain. A scenario can be described as a
consequence upon the creation of the generation of
particular Stimulus. An example of a scenario occurs
when a receipt of a rapid surge in temperature (Stimulus)
from the sensor network; a collection of actions is
executed such as some checking process against some

574

attributes from the environment or the working order of
devices. This Checking routine can be seen as a Scenario,
which is associated to the start and event which signifies
the start of action execution (E.g.
InitializeCheckingRoutine). Similarly, a Scenario can be
characterized by the QoS, either statically or dynamically,
and a scenario could relate to the required resources
described using usedResource primitive.

6.13 Exclusive Service Type

Exclusive service is a type of service provided by the
Resource Instance (E.g. Physical resources or application
resources). It is guided by the control of access policy
defined by a collection of primitives. These primitives, as
a type of QoSCharacteristic [11, 13, 14], give a
quantitative control on the usage of resources. The details
of access control policy are outside the scope of this
paper. Further details can be found in [16, 17].

To get access to an Exclusive Service one needs to first
trigger an Acquire Service Event. If one successfully gets
hold of the Exclusive Service, The Exclusive Service
would be marked with the following attribute:
<AcquireServiceEvent id="ID000034" name="GetBuyTicketSession"
isBlocking="false">
 <UsedResources>/ExclusiveService/@ID045345</UsedResources>
 <PerformanceDescriptor>
 <ResourceCommunciation id="ID000067" isQoSObservation="1">
 <WorseCaseRequest name="WC_Request_Waiting" id="ID000067"
StatisticalQualifier="MAX" Direction="decreasing" Unit="min">
 <Value>120</Value>
 </WorseCaseRequest>
 <MeanCaseRequest name="MC_Request_Waiting" id="ID000067"
StatisticalQualifier="MAX" Direction="decreasing" Unit="min">
 <Value>35</Value>
 </MeanCaseRequest>
 </ResourceCommunciation>
 <Demand name="Session_Valid_Time" id="ID000075"
isQoSObservation="1">
 <Load id="ID000088" isQoSObservation="1">
 <period id="ID000088" Unit="min">
 <Value>12</Value>
 </period>
 </Load>
 </Demand>
 </PerformanceDescriptor>
 </QoSDescriptor>
</AcquireServiceEvent>

Figure 7 Acquire Service Event XML example

<ExclusiveService id="ID045345" name="TicketPurchase"
isAcquired="1">
 <AccessAcquiredTime ClockRef="/GlobalTimingDevice/Clock ">
 <TimeInstant ClockRef="/GlobalTimingDevice/Clock">2004-11-
17T09:30:47</TimeInstant>
 </AccessAcquiredTime>
 <AllowAccessTime ClockRef="/GlobalTimingDevice/Clock">
 <Duration><Value>PT12M</Value></Duration>
 </AllowAccessTime>
</ExclusiveService>

Figure 8 Exclusive Service XML example

7 Conclusion

In this paper we demonstrated the XML descriptor based
approach to describe the real time semantics in XML.
XML is useful to describe real time properties for data
communication[18]. In order to create a consistent schema
that contains the correct semantics offer by conceptual

design model, we have used the object oriented
conceptual model transformation approach by [15]. We
believe that, this work will bring towards defining an
approach using XML to describe real time resources. By
providing such a XML profile, it establishes a knowledge
based for organizations to exchange data using XML
messaging.

Reference

[1] deVos, A., Rowbotham, C. T.: Knowledge
representation for power system modeling, 22nd IEEE
Power Engineering Society International Conference,
PICA 2001, (2001)
[2] Spivey, J.M., The Z Notation: A Reference
Manual Second Edition, in Prentice Hall International
(UK) Ltd. 1998: Oxford, London.
[3] Alur, R.: Timed Automata, In Proc 11th
International Conference of Computer
Aided Verification: CAV'99, (1999)
[4] Harel, D.: Statecharts: A Visual Formalism For
Complex Systems, Science of
Computer Programming, Vol 8, (1987), 231-274
[5] Shaw, A. C.: Real Time Systems and Software.
John Wiley & Sons, Inc., (2001)
[6] Apvrille L., Courtiat J., Lohr C., Saqui-Sannes
P., TURTLE: A Real-Time UML
Profile Supported by a Formal Validation Toolkit, IEEE
Transaction on Software
Engineering, Vol 30, No. 7, (2004), 473-487
[7] Eshuis, R. and R. Wieringa, Tool Support for
Verifying UML Activity Diagrams. IEEE Transactions on
Software Engineering, 2004. 30(7): p. 437-447.
[8] Tsang, T.: An XML-Based Architecture for
Distributed Real-Time Multimedia
Systems, In Proc 1st Global Telecommunications
Conference, GLOBECOM 01(2001)
[9] Gu, X., Nahrstedt, K., Yuan, W., Wichadakul,
D., Xu, D.,: An XML-based Quality of Service Enabling
Language for the Web, Technical report, Department of
Computer Science, University of Illinois, April 2001.
(2001)
[10] Object Management Group, UMLTM Profile for
Schedulability, Performance, and Time Specification,
Version 1.1, OMG document number formal/05-01-02,
(2005)
[11] Object Management Group, UML Profile for
QoS and FT Draft Adopted Specification, OMG
document number ptc/04-01-05
[12] Poon, P. M. S., Dillon, T. S., Chang, E.: XML as
a basis for interoperability in
Real Time Distributed Systems, In Proc 2nd Workshop on
Software Technologies for
Future Embedded and Ubiquitous Computing Systems,
WSTFEUS 2004, (2004)

575

[13] Poon, P. M. S., Dillon, T. S. Chang, E.,:
Transformation of QoS data into XML
characterising data communication in Real Time
Distributed Systems, In Proc 2nd
IEEE International Conference on Industrial Informatics,
INDIN 2004, (2004)
[14] Poon, P. M. S., Dillon, T. S, Feng, L., Chang, E..:
Descriptor based QoS Profile in
XML, In Proc 3rd IEEE International Conference on
Industrial Informatics, INDIN 2005, (2005)
[15] Feng, L., Chang, E., Dillon, T. S.: Schemata
Transformation of Object-Oriented
Conceptual Models to XML: Int. Journal of Computer
Systems Science & Engineering,
Vol 18 No. 1 Jan 2003. (2003)
[16] Niz, D.d., L. Abeni, Saowanee, Saewong, and
a.R. Rajkumar. Resource Sharing in Reservation-Based
Systems. in IEEE Real-Time Systems Symposium. 2001.
London, U.K.
[17] OASIS. eXtensible Access Control Markup
Language (XACML) version 1.0. 2003 [cited 30 May
2004]; Available from: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=
xacml.
[18] der Vlist, E., Comparing XML Schema
Languages,
http://www.xml.com/pub/a/2001/12/12/schemacompare.ht
ml (Access on 28th December 2007) (2001)

576

