
©2006 IEEE. Personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or

to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195656352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

XML Descriptor based approach for Real Time data messaging

Polly M.S. Poon1, Tharam S Dillon1, Elizabeth Chang2, Ling Feng3

1Faculty of Information Technology, UTS, Sydney, Australia
{polly, tharam}@it.uts.edu.au

2School of Information Systems,Curtin University of Technology,Australia
change@cbs.curtin.edu.au

3 Database Group, Department of Computer Science, Univerisity of Twente, Enschede, The
Netherlands,

ling@cs.utwente.nl

Abstract

This paper presents an overview of the Real Time
Markup Language (RTML). RTML is a XML profile
which provides the syntactic representation for
describing the semantics of real time data for
exchange over distributed networked real time
systems. For the basis of interoperability, this profile is
described in the XML Schema language. This paper
describes the background of this work and shows how
the vocabularies are developed, and how it derives the
extensibility of XML Schema in aiding the definition of
data in real time systems in order to achieve the goal
of interoperability.

1. Introduction

Traditionally, most of the developments of real time
embedded systems are driven by technology. System
requirements of this type are conventionally
overwhelmed by the complex technicality. But today,
the alignment of operation and development decisions
has gradually moved to the business and industrial
perspective and technology becomes a tool which
drives these businesses or industries. This has
contributed to the advent of enterprise service based
system development methods, where technology
allows the acquisition, consolidation and
transformation of data or process instruction between
discrete system domains. For instance, the work flow
collaboration between logistics system and large
production plants where manufacturing machineries
are located in dispersed locations.

To enable the collaboration between the remote
systems, it requires intelligent use of current
technologies. Despite the wide spread use of the
emerging distributed networking paradigm (E.g. Java
RMI, IIOP, SOAP), there are still many applications
that interface with the external environment using a
fundamental form of networking protocol. (E.g.
Socket, RPC). To consider the ever changing web
architecture faced by enterprises, there are demands for
system integration at the application level, where
system components could collaborate with the support
of interoperability mechanism, especially in the
context of real time systems.

2. Challenge of developing distributed real
time systems

[1] addresses the complexity involved with
distributed real time systems when they are realized by
the numerous middleware standards. The challenge is
larger when the system is responsible for a wide range
of tasks must be handled by the application including
safety critical and the pressure for increased
productivity [2]. Some of the challenges are listed as
follow:

1. Collection and transmission of data from
sensors to data concentrators

2. Storage of data at several levels and different
databases that must interoperate with each other. Some
systems, for example advanced systems which run in
power plants [4], one requires integration of real time
data, or historic data to make intelligent analysis and
allow the system to run predictably. This requires the

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

integration between archived data and operating real
time data. Another example would be the
implementation of communication between segments
of networks with the use of management agent, where
information is exchanged by agent on behalf of
network stations.

3. Representing the synchronization and
concurrency of parallel activities of active objects in a
textual representation

4. To map the meaning used by individual
systems to a mutually understandable vocabulary that
enable system integration.

5. Many of the available middleware solutions
for distributed application integration are targeted at
the typical business model, complex services like real
time systems is not generally available

The key of success for the collaboration between
distributed computing architecture is relied on
consistent definition of interface and data
definition/access, in particular of how the data is
formatted, exchanged and stored. To achieve the above
one requires a consistent specification of the data
definitions to ensure data integrity and enhance the
interoperability among heterogeneous data sources, as
depicted in Fig. 1. This ensures a smooth
implementation of service collaboration, since data
contains the abstract from the logic of the domain [3].
This needs following consideration:

a) A format that is widely accepted, platform
independent which facilitate data exchange among
different data sources

b) A suitable mechanism for storing ‘annotated’
data that has clearly defined semantics.

In this paper we propose a XML based messaging
method for the interoperability between real time
systems. We are looking in terms of application
perspective, by providing a clearly defined XML
schema, this enable real time data exchange across
multiple platforms, which individual systems could
map their internal context to a mutually understandable
vocabulary. To achieve this we describe a method of
incorporating real-time semantics mapping using XML
descriptor based model, for representing knowledge in
real-time systems enabling XML based messaging. In
the reminder of this paper, we will discuss the related
work, design goal of RTML, and the complete
specification of RTML follow by a summary to
conclude this paper.

3. Related Work

Interoperability plays an important role in
distributed system communication. There are existing

works that targets the use of XML in representing
quantitative measures of resources usage in distributed
applications.

Figure 1 Distributed Communication using
XML

RT-XML [12] is an XML based modeling language
which describes a profile for XML and multi-media
systems and models a few features of real time systems
such as time ordering, time constraints, probabilistic
behavior and qualitative description of a multimedia
stream. It describes the application level control over
the delivery of multimedia services. Whilst it provides
a descriptive model for multimedia systems, it is not
sufficient for appropriate for real time systems in more
general applications. In addition, RT-XML does not
provide adequate support in schema level
representation which XML document cannot be
automatically validated with defined constraints.

Hierarchical QoS Markup Language [13] is a XML
representation of a distributed multimedia application
to be delivered across the Internet with QoS capability.
This work is one of the earlier studies which
investigate the use of QoS on an IP network using
DTDs as the data constraint language. HQML provide
a solid model for describing the multimedia systems,
its primary purpose as a XML profile is directed
towards multimedia and network. Therefore, for real
time applications, it requires further investigation for a
more general XML profile.

4. Relationship with other standards: ITU
X.641 model and OMG Profiles

In order to develop a consistent set of descriptive
languages for DRE Systems it requires a solid
framework that can provide the abstraction of the
properties and behavior of the DRE systems. RTML is
mainly derived based on the specification from Object

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

Management Group, UML™ Profile for
Schedulability, Performance, and Time Specification
from Object Management Group (SPT hereafter) [14]
and the UML™ Profile for Modeling Quality of
Service and Fault Tolerance Characteristics and
Mechanisms from Object Management Group[15]
(QoS Profile hereafter). The core resources model (See
Fig. 2) provides the fundamental abstraction of the
relationship between descriptor and instances of the
modeling element within the SPT and QoS Profiles. It
provides a high level viewpoint of the relationship
between Resources, the ResourceService and
QoSCharacteristics. In this paper we will discuss on
the Resource section of the SPT profile. Other parts
have been considered in [17, 18, 19] by the present
authors.

Apart from OMG SPT, RTML has also adopted the
specification developed by ISO and ITU-T document
number X.641 Recommendation (ISO/IEC IS 13236)
[10]. This specification provides a standard approach
to describe QoS for different purposes, and how can
QoS be described from different levels or viewpoints
and precision. Along with the ISO/IEC specification,
we have also adopt QoS Profile. The meta-model in
QoS Profile provides a lightweight modeling
component for conceptual design customization.The
above standards have provided fundamental constructs
for conceptual model transformation into RTML
constraints. This design time construct can be
complemented by realizing additional details to enrich
the description to the design elements defined in those
specifications. RTML provides a reference model for
the realization of abstract details [17, 20].

Figure 2 General Resource Model
(Extracted from SPT)

5. Design Goal

The goal of developing RTML, is to provide
interoperability between real time systems in
distributed network, in particular among applications
in which time (and a description of resources) is a
strong feature in the data representation that
determines the validity of process or data. We propose

a design time description profile for a model based
driven methodology enabling data integration between
distributed domains. It is intended that, a XML based
knowledge representation should allow the description
of time dependent heuristics and dynamic properties
into the XML document. RTML provides the notion of
time, which is missing in many existing XML profiles.
Intended applications of RTML could be network
management systems, distributed process control
center, teleconferencing software, e-Commerce
systems such as an online ticket purchase application,
in which time plays a crucial role in determining the
validity of the user session.

Among the diversity of concerns for real time
systems, RTML must capture and represent of 4 major
aspects. These include:

1) Time. It can be represent as an instant or interval
in RTML. Each time element is attributed with the
Clock Reference. Clock Reference is an element which
describe the ClockRef (As a IDREF of a global clock
which this time element is synchronized to) and the
reference current time instant. This ClockRef act as a
guarding condition which implies that the execution of
process should not exceed this reference time, based
on the deadline validity.

RTML uses real-valued and time based
representation. A real-valued time is annotated with
unit (E.g. microseconds or minute), which can be can
be generated in a list or as a recurring time.

2) Resource. RTML provides a collection of
primitives for resource description including physical
resources such as physical device (E.g. CPU or
communication devices) and resource service such as
application or services description. Resources have a
complementary relationship with QoS in real time
systems. In RTML, both elements of QoS and
Resources can be represented statically as internal
description is attached to the sub-element or be linked
dynamically within RTML instance which is
referenced using xPath with the aid of ID and IDREF.

3) QoS. In [18, 19] we have presented the XML
Profile for QoS. At this stage we have provided a
profile for representing QoS of Resource Instances
description.

4) Action Execution. The description of action
execution and resource service instance are described
using the CausalityModel. Essentially the
CausalityModel is the container which specifies the
actions involved in a systems interaction instance
between application domains. The details of relevant
components will be discussed in a later section.

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

6. Abstract elements of RTML – A
descriptor based approach

In previous papers [19] we have shown how RTML
uses the conceptual OO model transformation [20] into
RTML XSD constraints. In this section we will
provide an overview on overall the specification of
RTML. We will discuss the fundamental constructs in
this paper.

RTML is a XML descriptor based profile. Elements
in RTML can be classified into three corresponding
descriptor types: Descriptor (D), DescriptorMapper
(DM) or DescriptorCategory. The use of descriptors
allows multi level abstraction. Ds and DMs are further
defined into corresponding spectrums. We will discuss
these concepts in detail in this section.
Descriptor is a high level construct in RTML. It

provides the syntactic and semantic descriptor of
metamodel elements from class and transformed into
XML Schema using [20]. Example of instantiation for
Descriptor is Device, Scenario, Latency, or
Throughput. At an abstract level, Descriptors are
categorized into QoS Descriptor and Resource
Descriptor. These primarily describe the concepts
involve in real time system modeling.
DescriptorMapper: On the other hand DMs provide

the details of the relationships between Descriptors,
DescriptorMappers, or a combination of both. DMs
provide the syntactic description of RTML in XML
Schema, and it also provides the semantics of
relationship between Descriptor elements. Example of
a DM is ConstraintContext in the aspect of QoS, in a
nutshell, it describe how the constraints are applied in
the context of QoS. Both Constraint and Context are
Descriptor elements, putting these together give the
description of the scenario within which the constraints
can be interpreted.
DescriptorCategory: It is used in RTML to provide

a logical grouping for Descriptor and
DescriptorMapper. DescriptorCategory is transformed
in RTML using <xs:group>. An example of usage is in
the general QoS descriptor package, which includes
sub-packages such as Performance, Throughput and
Latency. Each of the sub-packages is represented as a
group in RTML.

7. Global Timing Device and Time

The timing mechanism is defined in RTML as a
global invariant. The Timing Mechanism in RTML
provides the reference to the location of a physical
clock, and some of the offered QoS attributes for the
characterization of the timing device. This allows the

elements that are defined locally within the RTML
structure to reference it through the entire hierarchy.
As discussed earlier, the purpose of global timing
device provides a mechanism as a point of reference to
ensure the validity of data or process.

7.1. Global timing device and synchronization
to the timing constraints of local elements

In [7] the concept of timed based automata was
discussed. It models the discrete systems by state-
transition graphs with the support of global clock and
synchronization of clock constraints specified in the
local ‘locations’ (vertices). The elapse of time is
expressed through real-value clocks. In RTML timing
constraint is enforced through the use of referencing of
clock through the linking with the use of URI
referencing to the physical location of a clock, or
through the use of a relative duration. In RTML, the
global timing mechanism is specified in the header unit
and allows it to be referenced throughout the entire
RTML document structure.

<GlobalTimingDevice id="ID000107">
 <Clock id="ID000108">
 <CurrentValue>
 <TimeInstant ClockRef="/@AA">2005-12-

11T09:30:47-05:00</TimeInstant>
 </CurrentValue>
 <ReferenceClock>

<ExternalClockURI>http://localhost/rtml/time</
ExternalClockURI>

 </ReferenceClock>
 <Resolution unit="ns">1</Resolution>
 <Drift unit=’ns’>0.00001 </Drift>
 </Clock>
</GlobalTimingDevice>

Figure 3 Global Timing Device in RTML

7.2. Extended time types

As discussed previously, the representation of time is
different for real time systems. In some cases, time
needs to be described in microseconds and in a
recurring order. In RTML, we extend the definition of
time in XML Schema which allows time to be facet in
different dimension.
Generally the timing properties of RTML can be
classified as absolute time (Time Instant) and relative
time (duration). Time can be described as a real-valued
with metric based measurement to specify its
granularity. Each time value is associated with a Clock
reference, as specified by the Global Clock defined in
the header of the RTML instance.

<xs:complexType name="TimeInstantType">
 <xs:choice>

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

 <xs:element name="TimeInstant">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:dateTime">
 <xs:attribute name="ClockRef"
type="rtml:xPathReferenceType"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="MetricTimeInstant"
type="rtml:MetricTimeInstantType"/>
 </xs:choice>
 <xs:attribute name="ClockRef"
type="rtml:xPathReferenceType"/>
</xs:complexType>

Figure 4 Time Instant Type

<xs:complexType name="MetricTimeInstantType">
 <xs:simpleContent>
 <xs:extension base="xs:double">
 <xs:attribute name="unit"
type="rtml:TimeUnitType"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

Figure 5 Metric Time Instant Time Type

Time duration can be represented in primitive XML
Schema duration time or using a metric based
recurring time interval.

<xs:complexType
name="RecurringMetricDurationType">
 <xs:sequence>
 <xs:element name="Interval"
maxOccurs="unbounded">
 <xs:simpleType>
 <xs:list
itemType="rtml:DurationIncrementType"/>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="unit"
type="rtml:TimeUnitType"/>
</xs:complexType>

<xs:simpleType
name="RecurringTimeDurationType">
 <xs:list itemType="xs:time"/>
</xs:simpleType>

Figure 6 Recurring Metric Duration Type
in XML Schema

8. Resources and the services offered

Resource, in SPT, is defined as a run-time entity
that can offer services which is characterized with the
notion of QoS. For instance, one can express the
latency of the network connection or to reflect the
dimension of the inter-arrival time of the packet to
reflect is available capacity. The purpose of this is to
quantify the variable consumption and existence of the
resources physical underpinnings.

As described above some resources offer services.
In RTML, resource services are expressed as a
functionality offer by the resource. This could be an
event generated from an instance of Resource (E.g.
Sensor, A monitoring unit in the data collection
server). A service could be described as an event or an
action execution, which consists of a number of
operation statements. In normal cases, an event should
be bounded by the time constraints which are validated
at runtime to ensure the time it was executed does not
exceed the allowed deadline. Once this time instant or
allowed duration is passed, the given condition for
execution will be changed based on the fact of whether
it is a hard or soft deadline. To describe the causality
of the deadline and action, we can represent it as
follows:

Using Pre-condition P which specifies that if the
current time tc is less than the deadline t, then it
implies that module Q occurs.

QPQP :,

8.1. Execution Time
Execution time specifies the time that is allocated to an
action to complete its course of execution. This is
represented as a type of Time Interval in RTML. The
constraint of Execution time is specified as follows:
8.1.1. Delay. Delay can be represented as an Event
with a given period of time to elapse from the time it is
initiated to when the event can be executed. For a
given event predicate P, clock N, delay is described as
propositional statements:

PPNtP t:,
Which t is the firing delay that must elapse for P to
hold true.
8.1.2. Execution time range. In some cases, one
cannot predict the exact firing time of an event but
merely a time zone when it will be executed. To model
this, one can use a range specified by its starting
instant and ending instant. Predicate P is valid as long
as t is within the range of tstart and tend.:

QPtttttQPNt endstart :''',,

8.1.3. Timeout. Particularly in real time systems, often
events are controlled by some timing device. For
instance, a timer is set to expire at a particular period
of time and notifies the corresponding object about the
total elapse of time. The purpose of a timeout event is
to monitor some continuously running process by
periodically checking some of the correctness of some
parameters, to ensure its normal working mode.

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

As specified in OMG SPT profile, a Timeout event is
associated to a Timer. It is assumed that a duration
ttimeout is the value which indicates the timeout,
which is the time instant when an event is fired and
tcur is the current time. We represent timeout in logical
equivalence below:

QPtttt
ttttttNtQP

endstart

timeoutcurcurtimeout

:)''(
))'((,,,',,

In other words, the concept of timeout is incorporated
into this statement such that if all the conditions of P
are satisfied and if the timing constraints which the
current time is less then or equal to the assigned firing
time and the duration of timeout, then it is legal to
execute module Q.
8.1.4. Polling. Polling is a process which checks the
value of a particular resource instances at the
frequency of defined time interval. This could be for
example a monitoring module sample the buffer in a
memory space. A polling event could also sample the
external resource instance. There are two types of
polling process:
1. An event which interrupts the currently
running process. This interrupt could result in some
routine service actions.
2. An event is execute when the particular
resource instances has completed all its process. In
some cases, for example a DB transaction, one would
want to ensure the atomicity of the process and
therefore the poll only executes when the transaction is
completed:
This could be also represents in RTML as follows:
<MemPoll id="ID002345"
name="RegularSpaceCheck" isInterrupt="1">
 <FiringInterval
ClockRef="//GlobalClock">
 <RecurringMetricDuration
unit="s">
 <Interval>0 2 4 5 6
11</Interval>
 </RecurringMetricDuration>
 </FiringInterval>
 <ResourceDescriptor>//DKSMem</Resource
Descriptor>
</MemPoll>

Figure 7 Polling in RTML

9. Causality Model

Causality is an important concept in RTML as it
describe the relationship between the individual
application domains through the use of various
modeling elements in SPT. The Causality Model in
RTML, on the other hand, presents a logical sequence
of events in an ordered fashion. The lifecycle of

interactions between application domains are described
in object-oriented representation which can clearly
describe the relationship, and through careful model
transformation, models are converted into XML
instance. The relationship between events is not only
represents by the order in time but can be augmented
with the constraint of time. Special events require the
control of time validity can be described using timed
based event elements (with optional support of QoS).

9.1. Components in Causality model

Causality model in RTML is derived from SPT.
SPT has provided detailed description on the modeling
elements of this model. In RTML terms, these
elements are transformed into XML Schema
constraints. Note here, the importance is how these
model elements are transformed and then structured in
RTML. The important concepts are discussed in the
following section.

Figure 8 Causality Model in RTML

9.1.1. Stimulus. A Stimulus is the result of the trigger
of an event or command generated from a remote
application domain. The description of Stimulus in
RTML is described as a element related to some
Resources Descriptors. The trigger of an event is
described as a Stimulus Generation Event which
generates this Stimulus at a point in time. In the
context of real time systems, this could be the case
where a sensor network generates an alarm signal (as a
Stimulus) to notify that an unusual surge in
temperature has occurred. This signal is delivered to its
target application such as the monitoring unit, this
Stimulus Generation event would specifically address
the receiver by pointing to the Resources and interface
methods offered by the target component.
9.1.2. Scenario. A scenario is the result of the delivery
of the stimulus from the remote application domain to
its target application domain. A scenario can be
described as a consequence upon the creation of the
generation of particular Stimulus. An example of a

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

scenario occurs when a receipt of a rapid surge in
temperature (Stimulus) from the sensor network; a
collection of actions is executed such as some
checking process against some attributes from the
environment or the working order of devices. This
Checking routine can be seen as a Scenario, which is
associated to the start and event which signifies the
start of action execution (E.g.
InitializeCheckingRoutine). Similarly, a Scenario can
be characterized by the QoS, either statically or
dynamically, and a scenario could relate to the required
resources described using usedResource primitive.
9.1.3. Exclusive Service Type. Exclusive service is a
type of service provided by the Resource Instance (E.g.
Physical resources or application resources). It is
guarded by the control of access policy defined by a
collection of primitives. These primitives, as a type of
QoSCharacteristic [15, 18, 19], give a quantitative
control on the usage of resources. The details of access
control policy are outside the scope of this paper.
Further details can be found in [22, 23].

Figure 9 Scenario in RTML

To get access to an Exclusive Service one needs to first
trigger an Acquire Service Event. If one successfully
gets hold of the Exclusive Service, The Exclusive
Service would be marked with the following attribute:

<AcquireServiceEvent id="ID000034"
name="GetBuyTicketSession" isBlocking="false">

<UsedResources>/ExclusiveService/@ID045345</Us
edResources>
 <PerformanceDescriptor>
 <ResourceCommunciation id="ID000067"
isQoSObservation="1">
 <WorseCaseRequest
name="WC_Request_Waiting" id="ID000067"
StatisticalQualifier="MAX"
Direction="decreasing" Unit="min">
 <Value>120</Value>
 </WorseCaseRequest>
 <MeanCaseRequest
name="MC_Request_Waiting" id="ID000067"
StatisticalQualifier="MAX"
Direction="decreasing" Unit="min">
 <Value>35</Value>
 </MeanCaseRequest>
 </ResourceCommunciation>
 <Demand name="Session_Valid_Time"
id="ID000075" isQoSObservation="1">
 <Load id="ID000088"
isQoSObservation="1">

 <period id="ID000088" Unit="min">
 <Value>12</Value>
 </period>
 </Load>
 </Demand>
 </PerformanceDescriptor>
 </QoSDescriptor>
</AcquireServiceEvent>

Figure 10 Acquire Service Event XML
example

<ExclusiveService id="ID045345"
name="TicketPurchase" isAcquired="1">
 <AccessAcquiredTime
ClockRef="/GlobalTimingDevice/Clock ">
 <TimeInstant
ClockRef="/GlobalTimingDevice/Clock">2004-11-
17T09:30:47</TimeInstant>
 </AccessAcquiredTime>
 <AllowAccessTime
ClockRef="/GlobalTimingDevice/Clock">
 <Duration><Value>PT12M</Value></Duration>
 </AllowAccessTime>
</ExclusiveService>

Figure 11 Exclusive Service in RTML

10. RTML applied: Online ticket purchase

In this section we demonstrate the use of RTML used
in a hectic heterogeneous environment. Many ticket
sales occupy a significant proportion of overall sales
today. Online ticket sales provide a convenient way of
ticket purchase for customers as this saves time in
lining up outside the ticket office. However, whenever
there are tickets of major events going on sale, during
critical peak, the online ticket purchase system would
need to handle the user loads with volumes of
connection as much as tens of thousands per seconds.
Systems will need to provide a robust service for all
elements involved in the ticket purchase transaction. In
such a chaotic situation, the system needs to ensure the
atomicity of a transaction (Ticket is booked and paid
by customer) and the fairness of resource access (E.g.
First in first out).
The sample scenario is shown in Fig. 12. Here we are
setting out an online ticketing system allowing
collaboration with different ticketing agents. These
agents could be the ticket reseller, corporate bodies or
credit card points redemption systems which require
access to the ticket. Though the number of entities in
the scenario is quite small, this could reflect what
happens in many different cases where resources are
limited and being competed for by a number of sources
of demands.
We have created our scenario based on a number of
parameters. In this scenario, there are only two
customers trying to purchase tickets through agents.
Agents directly communicate with the Ticketing
Manager of the Ticket System, which controls the

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

availability of tickets in the database. Agent has no
direct access to tickets. Agent can initiate a session
with the Ticketing Manager. This session is limited
based on duration, during which the agent can search
for available seats, reserve the seats, make a booking
and make a payment. To secure a ticket, agent must
make the payment before the session is ended. Here
we set out the rules that, as long as there still are
available tickets, Ticketing Manager allows new
session to be initiated by agents. In this case, when the
number of agents is greater than the number of
available tickets, agents will need to compete for the
available ticket. If an agent cannot get the available
ticket during when the reservation is being checked,
then the agent can wait and re-check until the session
is finished.

Figure 12 Modeled Ticket System

Figure 13 Online ticketing class diagram

10.1. Representing real time semantics in XML

RTML is an ideal candidate to represent the
complex data structure in this type of situation. The
central notion in this case is interoperability and the
management of resources and ensuring the correct
timeliness. In this scenario, the control of timeliness
will be the duration of session that is allocated to the
ticket purchase allows time.

Assume the agent has requested to initiate a ticket
purchase session from the Ticketing Manager. The
following XML document describes how the Ticketing
system returns the details of the current session to the
client. Note here the Ticket Purchase schema file has
utilized the RMTL schema namespace in

characterizing the description of the timing properties
and the server description. The server here is
characterized with QoS Descriptor which here can
specify the access control policy to the Ticket Server.

Figure 14 XML Specification of Ticket
Purchase Session from Ticketing Manager

<GlobalClock id="ID0001">
 <rtml:Clock>
 <rtml:Origin ClockRef="/LocalSysClock">
 <rtml:TimeInstant
ClockRef="ID0001">2001-11-
11T09:30:47</rtml:TimeInstant>
 </rtml:Origin>
 <rtml:Resolution
unit="s">1</rtml:Resolution>
 <rtml:Drift>0.0001</rtml:Drift>
 </rtml:Clock>
</GlobalClock>

Figure 15 XML instances of
TicketPurchaseSession utilizing RTML

The above representation shows the description of
global clock that defines the time reference for the rest
of document. Those elements which locally defined
within the GlobalClock element are to characterize the
QoS of the Clock.

<SessionTime ClockRef="ID0001">
 <rtml:Duration>
 <rtml:Interval>PT0H14M</rtml:Interval>
 </rtml:Duration>
</SessionTime>

Figure 16 Session time allocated to a Ticket
Purchase period

In the above XML fragment, it shows the
declaration of session time allow to a ticket purchase
session allocate to the agent. Notice here the ClockRef
is actually of Type <xs:IDREF> . The XSD mechanism
controls the integrity between the <xs:ID> defined by
the <GlobalClock> and <SessionTime>.

The following section describes how
TicketPurchase schema utilize RTML in defining the
resource of Server. Here the server is characterized
with QoS Characteristics. In this example, the details
of access control policy are specified;

<Server id="ID003432" name="TIXSERVER"
protected="1" isActive="1">

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

 <rtml:Description>Ticketing server only
allow access to registered
users</rtml:Description>

<rtml:Specification>AS/400</rtml:Specification
>
 <rtml:QoSDescriptor>
 <rtml:FunctionalityDescriptor>
 <rtml:AccessControl>
 <rtml:FirewallLocation>
<rtml:Value>123.54.23.22</rtml:Value>
 </rtml:FirewallLocation>
 <rtml:FirewallCapability>
 <rtml:Value>Emergency Alert
Logging</rtml:Value>
 <rtml:Value>User
authentication</rtml:Value>
 <rtml:Value>Resume
Connection</rtml:Value>
 </rtml:FirewallCapability>
 <rtml:ProxyLocation>
 <rtml:Value>123.54.234.23</rtml:Value>
 </rtml:ProxyLocation>
 <rtml:EncryptionMethod>
 <rtml:Value>RSA</rtml:Value>
 </rtml:EncryptionMethod>
 </rtml:AccessControl>
 </rtml:FunctionalityDescriptor>
 </rtml:QoSDescriptor>
</Server>

Figure 17 Server instance in RTML

10.2. Specifying process in RTML

The following example shows how processes can
be specified in RTML. Here a TicketPurchaseProcess
is described as a Scenario which is associate to a list of
Actions. Note here a Scenario can be dynamically
attributed with external argument as shown here the
description of Ticket is sourced from external schema
definition.

<rtml:Scenario id="ID000010"
name="TIXPURCHASEPROCESS">
 <rtml:ActionExecution>
 <rtml:Action id="ID000013"
name="CHECKTIXAVAILABILITY">
 <rtml:FiringTime ClockRef="ID0001">
 <rtml:TimeInstant>2005-12-
02T09:30:49</rtml:TimeInstant>
 </rtml:FiringTime>
 <rtml:Arguments>
 <rtml:Argument id="ARGU_01"
name="ACT_ARGU" mode="IN">
 <rtml:Complex
location="http://www.ticketnow.com/Ticket.xsd"
namespace="http://www.ticketnow.com">
 <Ticket>
 <Concert
type=”string”>U2April1Sydney</Concert>
 <Num_Ticket
type=”int”>2</Num_Ticket>
 </Ticket>
 </rtml:Complex>
 </rtml:Argument>

</rtml:Action>
<rtml:Action id="ID000013"

name="PURCHASETICKET">

 .
 .
</rtml:Action>

 </rtml:ActionExecution>
 <rtml:QoSDescriptor>
 .
 .
 </rtml:QoSDescriptor>
</rtml:Scenario>

Figure 18 Scenario in RTML
The agent can directly utilize this XML instance by

directly binding to the application module. Here we
show an example of using JAXB API from Sun. This
API allows dynamic binding of XML Schema into
Java code and unmarshall data from XML document
and maps to a Java instance.

//TicketIFBean
try {

 JAXBContext jc = JAXBContext.newInstance(
"ticketing.purchase");

 Unmarshaller u = jc.createUnmarshaller();

 TicketPurchaseSession tps =
(TicketPurchaseSession)u.unmarshal(new
FileInputStream("Tix_Pur_u2_032.xml"));

 //Unmarshalling XML documet and maps to
command stack

 ActionExecution ae =
tps.getActionExecution();

 List actions = new List();
 //Extract collection of actions from ae

and map to individual Action, code omitted
 for (int i = 0; i < aList.size(); i++)
 {
 ... //Mapping the details of action in

an XML document to Action instances
 }

}
catch(JAXBException je) {
 je.printStackTrace();
 } catch(IOException ioe) {
 ioe.printStackTrace();
}

Figure 19 RTML Java binding using JAXB
API

11. Conclusion

In this paper we have demonstrate a method which
uses descriptor based approach to describe the real
time semantics in distributed real time systems using
XML. We have chosen XML Schema for a number of
advantages [24]. In order to create a consistent schema
that contains the correct semantics offer by conceptual
design model, we have used the OO conceptual model
transformation approach proposed by [20]. As discuss
in this paper, very often that individual real time
systems usually do not have knowledge of the
application from each other. So attempting to set up

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

collaboration for data exchange will be a major
challenge and especially when it is dealing with
multiple heterogeneous sources. We introduced a
descriptor based approach for describing the resources
using three types of descriptors namely Concept
Descriptor for illustrating the details of the features
from a real times systems; a Category Descriptor for
organizing the logical structure of Concept Descriptors
whose share common similarities; and Relationship
Descriptor which describe the structure of a collection
of Concept Descriptors and Relationship Descriptors
which illustrate the semantics, syntax and organization
of such a structure. We believe that, this work will be
one of the first steps towards defining an approach
using XML to describe real time resources. By
providing such a XML profile, it establishes a
knowledge based for organizations to exchange data
using XML messaging.

12. References

[1] ZHAO, W., Challenges in Design and
Implementation of Middlewares for Real-Time Systems:
Guest Editor’s Introduction. Kluwer Academic Publishers
Real-Time Systems, 2001. 20: p. 115–116.

[2] Sharp, D. Real-Time Distributed Object
Computing: Ready For Mission-Critical Embedded System
Applications in 3rd International Symposium on Distributed
Objects & Applications. 2001. Rome, Italy.

[3] Messenheimer, S., Weiszmann, C.: The Impact of
Service-Oriented Architectures On Data Access and
Integration, http://www.sdtimes.com/article/special-
20050501-01.html, Software Development Times, Last
Access on May 2005

[4] deVos, A., Rowbotham, C. T.: Knowledge
representation for power system modeling, 22nd IEEE Power
Engineering Society International Conference, PICA 2001,
(2001)

[5] Olsen, G.,:An overview of B2B integration,
http://www-
3.ibm.com/software/webservers/pam/EAI_Journal_B2B_Inte
gration_Overview.pdf (Accessed on 25th April, 2005)

[6] Spivey, J.M., The Z Notation: A Reference Manual
Second Edition, in Prentice Hall International (UK) Ltd.
1998: Oxford, London.

[7] Alur, R.: Timed Automata, In Proc 11th
International Conference of Computer Aided Verification:
CAV'99, (1999)

[8] Harel, D.: Statecharts: A Visual Formalism For
Complex Systems, Science of

Computer Programming, Vol 8, (1987), 231-274
[9] Shaw, A. C.: Real Time Systems and Software.

John Wiley & Sons, Inc., (2001)
[10] Apvrille L., Courtiat J., Lohr C., Saqui-Sannes P.,

TURTLE: A Real-Time UML Profile Supported by a Formal
Validation Toolkit, IEEE Transaction on Software

Engineering, Vol 30, No. 7, (2004), 473-487

[11] Eshuis, R. and R. Wieringa, Tool Support for
Verifying UML Activity Diagrams. IEEE Transactions on
Software Engineering, 2004. 30(7): p. 437-447.

[12] Tsang, T.: An XML-Based Architecture for
Distributed Real-Time Multimedia Systems, In Proc 1st
Global Telecommunications Conference, GLOBECOM
01(2001)

[13] Gu, X., Nahrstedt, K., Yuan, W., Wichadakul, D.,
Xu, D.,: An XML-based Quality of Service Enabling
Language for the Web, Technical report, Department of
Computer Science, University of Illinois, April 2001. (2001)

[14] Object Management Group, UMLTM Profile for
Schedulability, Performance, and Time Specification,
Version 1.1, OMG document number formal/05-01-02,
(2005)

[15] Object Management Group, UML Profile for QoS
and FT Draft Adopted Specification, OMG document
number ptc/04-01-05

[16] Gogniat G., Rouxel S., Diguet J., UML Profile for
SDR Hardware/Software Adequacy Verification, OMG 1st
Annual Software-Based Communications Workshop:From
Mobile to Agile Communications, SBC04’
(http://www.omg.org/news/meetings/workshops/SBC_2004_
Manual/02-3_Goubard_etal.pdf) (Access on 1st February,
2005) (2004)

[17] Poon, P. M. S., Dillon, T. S., Chang, E.: XML as a
basis for interoperability in Real Time Distributed Systems,
In Proc 2nd Workshop on Software Technologies for Future
Embedded and Ubiquitous Computing Systems, WSTFEUS
2004, (2004)

[18] Poon, P. M. S., Dillon, T. S. Chang, E.,:
Transformation of QoS data into XML characterising data
communication in Real Time Distributed Systems, In Proc
2nd IEEE International Conference on Industrial Informatics,
INDIN 2004, (2004)

[19] Poon, P. M. S., Dillon, T. S, Feng, L., Chang, E..:
Descriptor based QoS Profile in

XML, In Proc 3rd IEEE International Conference on
Industrial Informatics, INDIN 2005, (2005)

[20] Feng, L., Chang, E., Dillon, T. S.: Schemata
Transformation of Object-Oriented Conceptual Models to
XML: Int. Journal of Computer Systems Science &
Engineering,Vol 18 No. 1 Jan 2003. (2003)

[21] W3C Recommendation. 1999, Available from:
http://www.w3.org/TR/REC-xml-names/.

[22] Niz, D.d., L. Abeni, Saowanee, Saewong, and a.R.
Rajkumar. Resource Sharing in Reservation-Based Systems.
in IEEE Real-Time Systems Symposium. 2001. London,
U.K.

[23] OASIS. eXtensible Access Control Markup
Language (XACML) version 1.0. 2003 [cited 30 May
2004]; Available from: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml.

[24] der Vlist, E.,: Comparing XML Schema
Languages,http://www.xml.com/pub/a/2001/12/12/schemaco
mpare.html (Access on 23th May 2005) (2001)

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

