19 research outputs found

    What Cognitive Mechanism, When, Where, and Why? Exploring the Decision Making of University and Professional Rugby Union Players During Competitive Matches

    Get PDF
    Over the past fifty years decision making research in team invasion sport has been dominated by three research perspectives, information processing, ecological dynamics and naturalistic decision-making. Recently, attempts have been made to integrate perspectives, as conceptual similarities demonstrate the decision making process as an interaction between a players perception of game information and the individual and collective capability to act on it. Despite this, no common ground has been found regarding what connects perception and action during performance. The differences between perspectives rest on the role of stored mental representations, that may, or may not facilitate the retrieval of appropriate responses in time pressured competitive environments. Additionally, in team invasion sports like rugby union, the time available to players to perceive, access memory and act, alters rapidly between specific game situations. Therefore, the aim of this study was to examine theoretical differences and the mechanisms that underpin them, through the vehicle of rugby union. Sixteen semi-elite rugby union players took part in two post game procedures to explore the following research objectives; i) to consider how game situations influence players perception of information; ii) to consider how game situations influence the application of cognitive mechanisms whilst making decisions and iii) to identify the influence of tactics and/or strategy on player decision-making. Deductive content analysis and elementary units of meaning derived from self-confrontation elicitation interviews indicate that specific game situations such as; the lineout, scrum or open phases of play or the tackle situation in attack or defence all provide players with varying complexity of perceptual information, formed through game information and time available to make decisions. As time increased, players were more likely to engage with task-specific declarative knowledge-of the game, stored as mental representations. As time diminished, players tended to diagnose and update their knowledge-in the game in a rapid fashion. Occasionally, when players described having no time, they verbalised reacting on instinct through a direct connection between perception and action. From these findings, clear practical implications and directions for future research and dissemination are discussed

    Coaching player decision making in rugby union:Exploring coaches espoused theories and theories in use as an indicator of effective coaching practice

    Get PDF
    Researchers exploring how coaches can best support the development of their players decision making within team invasion sports have often been conducted from a cognitive or ecological approach, which differ in their views regarding the presence and absence of memory representations. This difference has, in turn, resulted in practical implications that are theoretically different, but not pedagogically different. Research has categorised such approaches to coaching decision making into intentional decision making training or incidental decision making training that offer different suggestions for how coaching methods may be used within their practice. Sometimes, these categories of training have been offered as the way coaches should operate over the careful selection of coaching methods given their intentions for impact. Instead, within this study we aim to explore the pragmatic nature of coaching practice, rather than adherence only to theoretical principles or beliefs

    An examination of action capabilities and movement time during a soccer anticipation task

    Get PDF
    This study examined the anticipation responses of twenty skilled youth players who were assigned to either a change of direction (CODG) or small-sided games group (SSGG). Action capabilities were assessed via a countermovement vertical jump (CMVJ), 20ā€‰m sprint, 5ā€‰m acceleration and arrowhead change of direction (COD) test. Anticipation was measured via a soccer-specific anticipation test (SSAT), which required participants to anticipate the actions of an opposing player and intercept a pass. Pre- and post-intervention testing procedures were identical for both groups. Following training there was an overall improvement in CMVJ performance (pā€‰<ā€‰0.05, rā€‰=ā€‰0.52) for both training groups and this improvement was correlated with movement initiation in the SSAT (rā€‰=ā€‰0.61, pā€‰<ā€‰0.05). The novel findings of this study highlight that different training modes can potentially have a positive impact on anticipation performance. Further investigation focussing on an examination of the relationship between training, anticipation, and action capabilities in sport is warranted for the development of research and applied perspectives in expertise

    Clarifying Assumptions about Intraoperative Stress during Surgical Performance: More Than a Stab in the Dark: Reply

    Get PDF
    Ɠ The Author(s) 2011. This article is published with open access at Springerlink.com We thank Dr. Ali for his concise annotation of our efforts to validate a tool that evaluates mental workload in surgery [1, 2]. Unlike other safety critical domains, the field of surgery has been slow to acknowledge the impact of intraoperative stress on surgical performance, but recently a sea change has been triggered by authorities in the field of surgical education [3]. We agree with Ali that stress is not by default detrimental to performance. Our aim was to develop a diagnostic tool that identifies the factors that contribute to disrupted performance, should it occur. Indeed, studies of the effects of acute stress on operating performance have shown considerable variability, ranging from no effect to either facilitative or debilitative effects [3ā€“5]. The Yerkes-Dodson law emerged from the earliest attempts to explain the relationship between physiological arousal and performance, but it has been criticized for treating stress as a unitary construct, influenced solely by physiological factors [6]. More recently, Catastrophe Theory has been invoked to model the relationship, using both physiological and psychological (cognitive anxiety) components of stress [7]. The model proposes that physiological arousal displays a mild inverted-U relationship with performance when cognitive anxiety is low, but that catastrophic declines in performance can occur if both physiological arousal and cognitive anxiety are high. Recent surgical literature has elucidated the complexity of M. Wilson (&amp;

    Implicit motor learning promotes neural efficiency during laparoscopy

    Get PDF
    Background An understanding of differences in expert and novice neural behavior can inform surgical skills training. Outside the surgical domain, electroencephalographic (EEG) coherence analyses have shown that during motor performance, experts display less coactivation between the verbal-analytic and motor planning regions than their less skilled counterparts. Reduced involvement of verbal-analytic processes suggests greater neural efficiency. The authors tested the utility of an implicit motor learning intervention specifically devised to promote neural efficiency by reducing verbal-analytic involvement in laparoscopic performance. Methods In this study, 18 novices practiced a movement pattern on a laparoscopic trainer with either conscious awareness of the movement pattern (explicit motor learning) or suppressed awareness of the movement pattern (implicit motor learning). In a retention test, movement accuracy was compared between the conditions, and coactivation (EEG coherence) was assessed between the motor planning (Fz) region and both the verbal-analytic (T3) and the visuospatial (T4) cortical regions (T3-Fz and T4-Fz, respectively). Results Movement accuracy in the conditions was not different in a retention test (P = 0.231). Findings showed that the EEG coherence scores for the T3-Fz regions were lower for the implicit learners than for the explicit learners (P = 0.027), but no differences were apparent for the T4-Fz regions (P = 0.882). Conclusions Implicit motor learning reduced EEG coactivation between verbal-analytic and motor planning regions, suggesting that verbal-analytic processes were less involved in laparoscopic performance. The findings imply that training techniques that discourage nonessential coactivation during motor performance may provide surgeons with more neural resources with which to manage other aspects of surgery. Ā© 2011 The Author(s).published_or_final_versio

    Conscious monitoring and control (reinvestment) in surgical performance under pressure.

    Get PDF
    Research on intraoperative stressors has focused on external factors without considering individual differences in the ability to cope with stress. One individual difference that is implicated in adverse effects of stress on performance is "reinvestment," the propensity for conscious monitoring and control of movements. The aim of this study was to examine the impact of reinvestment on laparoscopic performance under time pressure

    Getting to the Root of Fine Motor Skill Performance in Dentistry: Brain Activity During Dental Tasks in a Virtual Reality Haptic Simulation.

    Get PDF
    BACKGROUND: There is little evidence considering the relationship between movement-specific reinvestment (a dimension of personality which refers to the propensity for individuals to consciously monitor and control their movements) and working memory during motor skill performance. Functional near-infrared spectroscopy (fNIRS) measuring oxyhemoglobin demands in the frontal cortex during performance of virtual reality (VR) psychomotor tasks can be used to examine this research gap. OBJECTIVE: The aim of this study was to determine the potential relationship between the propensity to reinvest and blood flow to the dorsolateral prefrontal cortices of the brain. A secondary aim was to determine the propensity to reinvest and performance during 2 dental tasks carried out using haptic VR simulators. METHODS: We used fNIRS to assess oxygen demands in 24 undergraduate dental students during 2 dental tasks (clinical, nonclinical) on a VR haptic simulator. We used the Movement-Specific Reinvestment Scale questionnaire to assess the students' propensity to reinvest. RESULTS: Students with a high propensity for movement-specific reinvestment displayed significantly greater oxyhemoglobin demands in an area associated with working memory during the nonclinical task (Spearman correlation, rs=.49, P=.03). CONCLUSIONS: This small-scale study suggests that neurophysiological differences are evident between high and low reinvesters during a dental VR task in terms of oxyhemoglobin demands in an area associated with working memory

    Multitask training promotes automaticity of a fundamental laparoscopic skill without compromising the rate of skill learning.

    Get PDF
    A defining characteristic of expertise is automated performance of skills, which frees attentional capacity to better cope with some common intraoperative stressors. There is a paucity of research on how best to foster automated performance by surgical trainees. This study examined the use of a multitask training approach to promote automated, robust laparoscopic skills.Eighty-one medical students completed training of a fundamental laparoscopic task in either a traditional single-task training condition or a novel multitask training condition. Following training, participants' laparoscopic performance was tested in a retention test, two stress transfer tests (distraction and time pressure) and a secondary task test, which was included to evaluate automaticity of performance. The laparoscopic task was also performed as part of a formal clinical examination (OSCE).The training groups did not differ in the number of trials required to reach task proficiency (pĀ =Ā .72), retention of skill (psĀ >Ā .45), or performance in the clinical examination (pĀ =Ā .14); however, the groups did differ with respect to the secondary task (pĀ =Ā .016). The movement efficiency (number of hand movements) of single-task trainees, but not multitask trainees, was negatively affected during the secondary task test. The two stress transfer tests had no discernable impact on the performance of either training group.Multitask training was not detrimental to the rate of learning of a fundamental laparoscopic skill and added value by providing resilience in the face of a secondary task load, indicative of skill automaticity. Further work is needed to determine the extent of the clinical utility afforded by multitask training

    Conscious control is associated with freezing of mechanical degrees of freedom during motor learning

    Get PDF
    This study investigated whether conscious control is associated with freezing of mechanical degrees of freedom during motor learning. Participants practiced a throwing task using either error-strewn or error-reduced practice protocols, which encourage high or low levels of conscious control, respectively. After 24Ā hr, participants engaged in a series of delayed retention and transfer tests. Furthermore, propensity for conscious control was assessed using participants' ratings and freezing was gauged through movement variability of the throwing arm. Performance was defined by mean radial error. In the error-strewn group, propensity for conscious control was positively associated with both freezing and performance. In the error-reduced group, propensity for conscious control was negatively associated with performance, but not with freezing. These results suggest that conscious control is associated with freezing of mechanical degrees of freedom during motor learning
    corecore