
For Peer Review

 

 

 

 

 

Conscious control is associated with freezing of mechanical 

degrees of freedom during motor learning  
 

 

Journal: Journal of Motor Behavior 

Manuscript ID 35-16-194-RA.R2 

Manuscript Type: Research article 

Date Submitted by the Author: n/a 

Complete List of Authors: Van Ginneken, Wouter; The University of Hong Kong,  
Poolton, Jamie; Leeds Beckett University, School of Sport; The University 
of Hong Kong 
Capio, Catherine; The University of Waikato, Te Oranga Human 
Development and Movement; University of the Philippines Manila 
Van der kamp, John; VU University, Faculty of Human Movement Sciences; 

The University of Hong Kong 
Choi, Sin Yi; The University of Hong Kong 
Masters, Rich; The University of Waikato, Te Oranga Human Development 
and Movement; University of Hong Kong, Institute of Human Performance 

Keywords: motor learning, motor control, attention 

  

 

 

Journal of Motor Behavior
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leeds Beckett Repository 

https://core.ac.uk/display/96564279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


For Peer Review

Running head: CONSCIOUS CONTROL AND FREEZING IN MOTOR LEARNING 1 

Abstract 

This study investigated whether conscious control is associated with freezing of 

mechanical degrees of freedom during motor learning. Participants practiced a throwing task 

using either error-strewn or error-reduced practice protocols, which encourage high or low 

levels of conscious control, respectively. After 24 hours, participants engaged in a series of 

delayed retention and transfer tests. Furthermore, propensity for conscious control was 

assessed using participants’ ratings and freezing was gauged through movement variability of 

the throwing arm. Performance was defined by mean radial error. In the error-strewn group, 

propensity for conscious control was positively associated with both freezing and 

performance. In the error-reduced group, propensity for conscious control was negatively 

associated with performance, but not with freezing. These results suggest that conscious 

control is associated with freezing of mechanical degrees of freedom during motor learning. 
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Introduction 

Everyday motor tasks, such as carrying objects or tossing them at targets, can be 

accomplished using a large variety of movements. According to Bernstein’s (1967) “degrees 

of freedom problem” the nervous system cannot simultaneously process all these options. 

Instead, control may be achieved by “freezing mechanical degrees of freedom” – i.e., 

restricting joint ranges of motion and tightly coupling the motion of different joints. Due to 

these restrictions, freezing decreases movement variability (Higuchi, Imanaka, & Hatayama, 

2002) and simplifies the degrees of freedom problem. 

There is reason to suspect a relationship between conscious control and freezing 

during motor learning. Bernstein (1967) proposed that freezing is prevalent mainly during the 

early stages of motor learning, but gradually decreases as learning progresses. In the same 

year, Fitts and Posner (1967) proposed that early learning stages involve a high degree of 

conscious control, which subsequently decreases in later stages. The parallel between these 

ideas raises the question of whether conscious control and freezing are related. 

A number of studies have tacitly endorsed the relationship. Newell and Ranganathan 

(2010) proposed, and Lee, Chow, Komar, Tan, and Button (2014) found, that technical 

instructions about movement execution constrain mechanical degrees of freedom. As other 

studies had already shown that technical instructions elicit conscious control (cf. Liao & 

Masters, 2001; Masters, 1992), the finding by Lee et al. (2014) hints at a relationship between 

conscious control and freezing. Furthermore, Ranganathan and Newell (2008) found that the 

use of visual feedback – possibly as a means conscious control – during a movement was 

associated with tight coupling between degrees of freedom. These studies suggest that 

conscious control may be associated with freezing. 
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Perhaps the strongest indication of a link between conscious control and freezing comes from 

a study by Malhotra, Poolton, Wilson, Omuro, and Masters (2015). They studied discovery 

learning of a golf putting task and found that participants with a high propensity for conscious 

control displayed lower trial-to-trial variability of club-ball contact than participants with a 

low propensity for conscious control. Although, it is difficult to infer with certainty whether 

variability in club-ball contact can reflect freezing, because club-ball contact captures the 

outcome of the putting motion rather than the motion itself, the findings of do strengthen the 

expectation that conscious control and freezing are related. 

The current study investigated the effect of conscious control on freezing in three 

different ways: (1) by employing implicit motor learning interventions, (2) by measuring 

personality predispositions and (3) by including transfer tests that manipulate conscious 

control. Implicit motor learning interventions deliberately attempt to suppress conscious 

control (cf. Masters, 1992; Maxwell, Masters, & Eves, 2000; Poolton, Masters, & Maxwell, 

2005). Compared to explicit learning, implicit learning limits accrual of verbal knowledge 

(e.g., Masters, 1992), reduces dependence on working memory (Maxwell, Masters, & Eves, 

2003) and lowers cortical co-activation between verbal-analytic (T3) and motor planning (Fz) 

areas of the brain (Zhu et al., 2011a).  

An effective method of promoting implicit motor learning is to limit the number of 

errors
1
 throughout learning. Errors promote problem solving and thus may increase conscious 

control in an attempt to prevent future errors (Maxwell, Masters, Kerr, & Weedon, 2001), as 

evidenced by prolonged probe-reaction times (Lam, Maxwell, & Masters, 2010) and 

increased T3-Fz co-activation (Zhu, Poolton, Wilson, Maxwell, & Masters, 2011b). Hence, 

the occurrence of errors and thus conscious control can be influenced via manipulation of task 

                                                             
1
 Note that the term ‘error’ strictly means failure to achieve a specified performance goal. It should not be 

confused with quality of performance. High quality performance can result in an error, especially when the goal 

is challenging. Conversely, low quality performance can, in some cases, result in success, especially when the 

goal is not challenging. 
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constraints, such as target distance (e.g., Maxwell et al., 2001; Poolton et al., 2005; Zhu et al., 

2011b) or size (Capio, Poolton, Sit, Eguia, & Masters, 2013; Capio, Poolton, Sit, Holmstrom, 

& Masters, 2013). In this study, participants learned an aimed throwing task under either 

error-reduced or error-strewn protocols. 

As proposed by the theory of reinvestment (Masters & Maxwell, 2008; Masters, 

Polman, & Hammond, 1993), predisposition for conscious control is a personality trait 

(individual constraint) that can be reliably measured using the Movement Specific 

Reinvestment Scale (MSRS) (Masters, Eves, & Maxwell, 2005). Using the MSRS, studies 

have shown that individuals with a high propensity for conscious control tend to accrue more 

verbal knowledge (Maxwell, Masters, & Poolton, 2006) and show more T3-Fz co-activation 

(Zhu et al., 2011b) than individuals with a low propensity for conscious control. 

As proposed by Schmidt and Bjork (1992), motor learning, understood as a relatively 

permanent change in the motor repertoire, ought to be investigated using retention and 

transfer tests. For this reason, the current study included a delayed retention test followed by 

four transfer tests designed to manipulate conscious control. These transfer tests were  (1) 

secondary-task performance (Masters, 1992; Maxwell et al., 2000; Maxwell et al., 2001), 

which occupies working memory capacity and thus lowers the capacity for conscious control
2
, 

(2) instructed skill-focused attention, which has been found to increase conscious control 

(Beilock & Carr, 2001; Beilock, Carr, MacMahon, & Starkes, 2002; Gray, 2004; Jackson, 

Ashford, & Norsworthy, 2006), (3) psychological pressure, which increases conscious control 

(Baumeister, 1984; Cooke, Kavussanu, McIntyre, & Ring, 2010; Masters, 1992; Masters et 

al., 1993; Van Loon, Masters, Ring, & McIntyre, 2001) and (4) changes in task-constraints, 

thought to induce conscious control (Beilock & Carr, 2001). 

                                                             
2
 The secondary task also served as a manipulation check of the type of learning promoted by error-strewn and 

error-reduced practice protocols (Maxwell, Masters, Kerr, & Weedon, 2001). 
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To assess the impact of conscious control interventions on the organization of 

mechanical degrees of freedom it is necessary to operationalize freezing. Although inter-joint 

correlations and joint ranges of motion have often been used (e.g. Caillou, Nourrit, 

Deschamps, Lauriot, & Delignieres, 2002; Konczak, Van der Velden, & Jaeger, 2009; 

Vereijken, Van Emmerik, Whiting, & Newell, 1992), other measures exist, such as cluster 

analysis (Lee et al., 2014), dimensionality of state space (Newell, Broderick, Deutsch, & 

Slifkin, 2003) and movement variability (Higuchi et al., 2002). Of these different options, 

movement variability best suits the current study for two reasons. First, it has been shown to 

be a function of task accuracy demands (Sidaway, Sekiya, & Fairweather, 1995). It therefore 

ties in with the implicit learning intervention, in which task accuracy demands are 

manipulated. Second, a broad measure of freezing is preferred, because the aim of this study 

is to investigate whether an association between conscious control and freezing exists. 

Although specific details of such a relationship may be interesting for further research, it all 

hinges on whether the relationship exists or not. Therefore, freezing was operationalized by 

means of movement variability. 

It was hypothesized that participants in the error-strewn group and those with a high 

propensity for conscious control would have lower movement variability than those in the 

error-reduced group and with a low propensity for conscious control, respectively. During the 

retention and transfer phase, the secondary-task transfer test was expected to decrease 

freezing by occupying working memory capacity and thus lowering the capacity for conscious 

control. The other three transfer tests (i.e. skill-focus, pressure and changes in task 

characteristics) were expected to increase conscious control and thus promote freezing. 

Although not directly related to our research aim, it is customary to take motor performance 

into account. Therefore, the association between conscious control and performance was also 
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investigated, and in line with previous studies (cf. Masters & Maxwell, 2008) conscious 

control was expected to be negatively associated with performance. 

Methods 

Ethics. Ethical approval was requested from and granted by the university’s research 

ethics committee. 

Participants. Forty students (19 male, 21 female; age M = 21.5, SD 3.17 years) 

participated. All had normal or corrected to normal vision and received HKD125 (+/- USD15) 

for participating. 

Apparatus. See Appendix A for visual description of the apparatus used for 

kinematics. A six-camera Qualisys motion capture system (f = 120 Hz) recorded displacement 

of markers on participants’ acromion process (shoulder), olecranon process (elbow) and radial 

styloid (wrist), as well as the displacement of golf balls that were covered by reflective tape. 

Participants were seated on a 30 cm high stool positioned 4 m from the middle of a target. The 

target was a 30 cm high square cardboard box with horizontal dimensions ranging between 20 

and 95 cm in increments of 15 cm. A box containing 25 golf balls was placed comfortably 

within arm’s reach. The Movement Specific Reinvestment Scale (MSRS) (Masters et al., 

2005) was used to measure participants’ propensity for conscious control. The MSRS is a 10 

item 6-point Likert scale that ranges from “strongly disagree” to “strongly agree”. The Scale 

comprises a Conscious Motor Processing (CMP) and a Movement Self-Consciousness (MS-

C) subscale (Masters & Maxwell, 2008). 

Procedure. 

Practice. After signing informed consent, participants were fitted with the reflective 

markers. They were then seated on the stool with their shoulders aligned in the direction of 
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the target and were instructed to throw golf balls towards the middle of the target box using an 

overhand throw. They were granted one practice throw. A successful throw was recorded if 

the ball entered the target box directly, without bouncing first and regardless of whether it 

bounced out afterwards. Any other outcome was considered an error. 

Participants were randomly assigned to either an error-reduced (n = 20) or an error-

strewn practice protocol group (n = 20). Both groups performed 6 blocks of 50 throws. 

Participants in the error-reduced group started throwing to the biggest target box (95 x 95 

cm), after which the target size dimensions were reduced by 15 cm in each subsequent block 

of 50 throws. In the final block, participants in the error-reduced group threw to the smallest 

target box (20 x 20 cm). Participants in the error-strewn group threw to the smallest target box 

throughout practice. After the 25
th

 throw in each block, participants had a one-minute break 

during which balls were collected. Between blocks, participants had a two-minute break, 

during which balls were collected and the target size was changed for participants in the error-

reduced group. 

Retention and Transfer. After a period of at least 24 hours, participants engaged in a 

series of retention and transfer tests. They were reminded about the procedure, re-fitted with 

reflective markers and completed an anxiety-thermometer (Houtman & Bakker, 1989), which 

required them to indicate their current anxiety level on a 10 cm line ranging from “not 

anxious at all” to “extremely anxious”. 

Participants first performed 50 retention trials, in which the conditions were identical 

to the last block of the practice session – i.e., a target distance of 4 meters and horizontal 

target dimensions of 20 cm. Then – as changes in task characteristics promote conscious 

control (Beilock & Carr, 2001) – participants performed four blocks of 25 transfer trials in an 

A-B-B-A order in which the target was placed either 50 cm closer to or 50 cm further away 
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from the target than the standard 4 m distance. The beginning distance (close or far) was 

counterbalanced between and randomized within experimental groups. 

Subsequently, participants engaged in three more transfers tests – tone-counting, skill-

focus and pressure – the order of which was counterbalanced between and randomized within 

groups. Based on Maxwell et al. (2001), the tone-counting test required participants to count 

the number of high pitch tones from a series of randomly generated high- and low-pitched 

tones. The accuracy of these estimations served as a manipulation check for whether errors 

during practice had indeed affected levels of conscious control - participants from the error-

reduced group were expected to count tones more accurately than participants from the error-

strewn group because they used less conscious control when throwing, which placed a smaller 

burden on working memory capacity. Furthermore, tone-counting decreases participants’ 

capacity to use working memory to consciously control their movements. Therefore, the tone-

counting task also served as a manipulation of conscious control. 

Similar to Beilock and Gray (2012), the skill-focus test presented sounds in 10 

randomly chosen throws out of 50. Participants were told that, after completion of each throw, 

they would be asked to verbally indicate the position of their forearm (in front or behind their 

elbow) at the moment the tone was played. This manipulation was designed to increase levels 

of conscious control. 

In the pressure test, participants were informed that they could win up to 1000 HKD 

(+/- 125 USD) based on their performance. In order to ensure pressure for relatively proficient 

participants, 300 HKD was available for the best performance. To ensure pressure for less 

proficient participants, 200 HKD was available for the best improvement compared to block 6 

of the practice session. Assuming less proficient participants had performed poorly during the 

practice session, they could more easily win the 200 HKD prize. There were also 10 prizes of 
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50 HKD available for the best performance in each set of 5 throws. This approach was chosen 

so that even the participants who performed very poorly during the early part of the pressure 

test would have an incentive and thereby continue to experience pressure. Directly after 

completing the pressure test, participants again completed an anxiety-thermometer to establish 

how anxious they had felt during the pressure test. 

At the end of the procedure, participants completed the MSRS and were debriefed. 

Data handling. Trial-to-trial movement variability was defined as the mean Euclidean 

distance between the throwing arm kinematics of all trials in a block. Euclidean distance is a 

standard, comprehensive measure of dissimilarity (Han, Kamber, & Pei, 2006) that is 

regularly applied in kinematic analyses of human movement (cf. Jaitner, Mendoza, & 

Schöllhorn, 2001; Schorer, Baker, Fath, & Jaitner, 2007). First, the trajectories over the last 

200ms before ball release were selected. Subsequently, for each marker, the average of the 

absolute (i.e. Euclidean) distance between these trajectories was determined. By taking the 

average for all markers the final measure of mean Euclidean distance was obtained. Throws 

for which the forward acceleration phase was less than 200ms were excluded from analysis (< 

0.1% of throws). Lower movement variability was deemed to reflect greater freezing. See 

Appendix A for a more comprehensive description of how the mean Euclidean distance 

measure was obtained.  

Mean radial error (MRE)
3
 – i.e., distance (cm) between the middle of the target and 

ball flight at a height of 30 cm - was taken as the measure of throwing performance. Lower 

MRE reflects better performance. 

                                                             
3
 We here reiterate that MRE is not the same as the number of errors made during practice. MRE is the average 

distance between the landing position of the ball and the center of the target. The number of errors is the number 

of times the ball failed to enter the target box. Although these two measures may be related, it is not unthinkable 

that a relatively accurate throw in the error-strewn group may still lead to an error, while a bad throw in the 

error-reduced group may not produce an error if the target is large enough.  
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Data Analysis. Shapiro-Wilk Tests were used to test for normality. An independent-

samples t-test was used to compare the number of errors made by participants in the error-

reduced and error-strewn groups. A paired-samples t-test compared anxiety-thermometer 

values from before and after the pressure test. Cronbach’s alpha was used to test the internal 

consistency of the two factors of the MSRS and a Pearson correlation coefficient was 

calculated to evaluate their association. As tone-counting accuracy was not normally 

distributed, a Generalized Linear Mixed Model (GLMM) – the specifics of which are 

introduced below – was used to test for differences between the groups.  

Initially, repeated measures analyses of variance (RM ANOVA) were used to analyze 

the movement variability. However, significant interactions between group (dichotomous 

variable) and MSRS score (continuous variable) were found, which potentially biased the 

main effects (West, Aiken, & Krull, 1996). Furthermore, 33% of the data was found to violate 

the assumption of normality, rendering ANOVA inappropriate. As an alternative, GLMMs 

were computed, because they are more suitable for handling interactions between 

dichotomous and continuous variables and do not require data to be normally distributed 

(Twisk, 2006). 

As recommended by Twisk (2006), first a basic model was established that only 

included the main effects of group and MSRS score, after which the effect of practice block 

and interaction effects were entered in a stepwise fashion. Aikake’s Information Criterion 

(AIC) was used to evaluate whether the inclusion of each added predictor improved the 

model’s fit. A best fitting model was established by only including predictors that lowered the 

value of AIC by more than 2 points. Only the results of best fitting models are reported. If a 

particular variable or interaction is not mentioned in the results, this means that it was not part 

of the best fitting model and its effect was not significant. AIC values of all models can be 

found in Appendix B. 
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Bonferroni corrections were applied when multiple comparisons were made to follow 

up significant effects. As suggested by Nakagawa and Schielzeth (2013), partial (r
2
) and semi-

partial correlations (sr
2
) are reported as measures of effect size. These measures were 

determined using log-transformed (base-10) data in order to adhere to the assumption of 

normality. 

Results 

Outliers. Three participants were excluded from analysis for having MRE values 

more than 3 standard deviations above the mean and one was excluded for having an MSRS 

score of more than 3 standard deviations below the mean. 

MSRS. The internal consistency of the MSRS was acceptable (α = .790: MS-C α = 

.780; CMP α = .800) and the correlation between the MS-C and CMP sub-scales was high (r 

= .685, p < .001). Hence, for analysis of the propensity for reinvestment the total MSRS score 

was used (α = .795). 

Manipulation checks. The practice protocol manipulation had its desired effect. 

During practice, participants from the error-strewn group made significantly more errors (M = 

256.17, SD = 19.47) than participants in the error-reduced group (M = 115.11, SD = 22.38), 

(t(34) = 20.18, p < .001, d = 6.72, 95% CI = [126.85 155.26]). During the tone counting 

transfer test, participants from the error-strewn group made significantly more tone counting 

errors (M = 13.17, SD = 14.3) than those in the error-reduced group (M = 5.72, SD = 4.18), 

(F(1, 33) = 4.25, p < .05, sr
2
 = .13, b(64) = 7.35, SE b = 3.56, t(64) = 2.06, p < .05, 95% CI = 

[.10 14.60]). During the pressured transfer test, scores on the anxiety-thermometer suggested 

that participants felt more anxious (M = 5.08, SD = 2.85) than before the test (M = 2.69, SD = 

2.43), (t(35) = 5.73, p < .001, d = .96, 95% CI = [1.55 3.24]). 

Practice. 
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Learning curves regarding movement variability and mean radial error across practice 

blocks can be found in Figure 1. 

Movement variability. The best fitting model predicting movement variability 

included the main effects of training block (F(5, 207) = 1.51, p = .19, sr
2
 = .10)

4
, group (F(1, 

207) = 5.55, p < .05, sr
2
 = .08), MSRS score (F(1, 207) = 15.72, p < .001, sr

2
 = .06) and the 

interaction between group and MSRS score (F(1, 207) = 22.36, p < .001, sr
2
 = .08). 

Participants from the error-strewn group (M = 1.76, SD = .35) had lower movement 

variability than participants from the error-reduced group (M = 1.88, SD = .40), (t(207) = 

2.36, p < .05, 95% CI = [.02-.24]). Additionally, higher MSRS scores corresponded with 

lower movement variability (b(207) = -.04, SE b = .007, t(207) = -5.02, p < .001, 95% CI = [-

.051 -.022]). Further exploration of the interaction effect revealed that MSRS score predicted 

movement variability in the error-strewn group (F(1, 101) = 32.29, p < .001, sr
2
 = .18), but 

not in the error-reduced group (p > .05) (Figure 2). Higher MSRS scores in the error-strewn 

group corresponded with lower movement variability (b(101) = -.04, SE b = .006, t(101) = -

5.68, p < .001, 95% CI = [-.048 -.023]). The main effect of block entailed that movement 

variability decreased during the practice session (see Figure1). 

[Insert Figure 1 and Figure 2 about here] 

Performance. The best fitting model predicting MRE included the main effects of 

training block (F(5, 202) = 6.30, p < .001, sr
2
 = .21), group (F(1, 202) = .27, p = .60, sr

2
 < 

.01), MSRS score (F(1, 202) = 5.73, p < .05, sr
2
 = .01) and the interactions between group and 

MSRS score (F(1, 202) = 28.60, p < .001, sr
2
 = .07), as well as between group and training 

block (F(5, 202) = .66, p = .66, sr
2
 < .01). In the first two practice blocks, MRE was higher 

than in the last three blocks (ps < .001). Comparisons between all blocks can be found in 

                                                             
4 Note that the inclusion of a variable in the best fitting model does not guarantee statistical significance. As the 

effect of training block was not significant, post-hoc tests were not performed, as was the case for all other non-

significant effects. 
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Appendix C. Higher MSRS scores were associated with lower MRE (b = -.36, SE b = .08, t = 

-4.47, p < .001, 95% CI = [-.52 -.20]). Further exploration of the interaction between group 

and MSRS score revealed a significant effect of MSRS score in the error-strewn group (F(1, 

101) = 18.24, p < .001, sr
2
 = .08) as well as in the error-reduced group (F(1, 101) = 9.73, p < 

.01, , sr
2
 = .07). However, these effects were in opposite directions (Figure 3), with higher 

MSRS scores associated with lower MRE in the error-strewn group (b = -.36, SE b = .09, 

t(101) = -4.27, p < .001, 95% CI = [-.53 -.20]), but higher MRE in the error-reduced group (b 

= .13, SE b = .04, t(101) = 3.21, p < .01, 95% CI = [.05 .21]). 

[Insert Figure 3 about here] 

Retention and Transfer. 

Movement variability. The best fitting model predicting movement variability 

included the main effects of test (F(5, 208) = 4.22, p < .01, sr
2
 = .08), group (F(1, 208) = 

4.63, p < .05, sr
2
 = .02) and MSRS score (F(1, 208) = 2.84, p = .09, sr

2
 = .02). Participants 

from the error-strewn group (M = 1.62, SD = .27) displayed lower movement variability than 

participants from the error-reduced group (M = 1.75, SD = .40), (b = .25, SE b = .12, t = 2.15, 

p < .05, 95% CI = [.01 .23]) (Figure 4). In the pressure test (M = 1.43, SD = .64), movement 

variability was lower than in all other tests (ps < .05), followed by tone-counting (M = 1.59, 

SD = .75), far distance (M = 1.74, SD = .71), retention (M = 1.77, SD = .75), skill-focus (M = 

1.77, SD = .75) and short distance (M = 1.77, SD = .77) (Figure 5). All other between-test 

comparisons can be found in Appendix D. 

[Insert Figures 4 and 5 about here] 

Performance. The best fitting model predicting MRE included the main effects of test 

(F(3, 200) = 15.72, p < .001, sr
2
 = .23) (Figure 6), order of transfer tests (F(2, 200) = 1.10, p = 

.33, sr
2
 < .001), group (F(1, 200) = 2.84, p = .09, sr

2
 < .01), MSRS score (F(1, 200) = 1.06, p 
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= .31, sr
2
 < .001), and the interactions between group and MSRS score (F(1, 200) = 5.89, p < 

.05, sr
2
 = .02) (Figure 7) and between group and test (F(5, 200) = .31, p = .91, sr

2
 < .001). 

Further exploration of the interaction between group and MSRS score revealed a main effect 

of MSRS score (F(1, 101) = 11.49, p < .01, sr
2
 = .08) in the error-reduced group, with lower 

scores on the MSRS associated with lower MRE (b(101) = .16, SE b = .05, t(101) = 3.39, p < 

.01, 95% CI = [.07 .26]). A main effect of MSRS score was absent in the error-strewn group 

(F(1, 101) = .71, p = .40, sr
2
 < .01). MRE was lowest in the short distance test (M = 21.53, SD 

= 4.08), followed by pressure (M = 22.19, SD = 4.22), tone-counting (M = 23.47, SD = 5.58), 

skill-focus test (M = 24.56, SD = 5.12), retention (M = 26.80, SD = 4.35) and far distance (M 

= 28.62, SD = 5.10). In the pressure test, MRE was significantly lower than in retention, far 

distance and skill-focus (ps < .05). All other between-test comparisons can be found in 

Appendix D.  

[Insert Figure 6 and 7 about here] 

Discussion  

This study investigated whether conscious control is associated with freezing of 

mechanical degrees of freedom during motor learning. It was expected that conscious control 

would be associated with freezing. To test this hypothesis: (1) participants engaged in 300 

practice trials of an aimed throwing task using either error-strewn or error-reduced practice 

protocols – an established method by which to manipulate problem solving efforts and 

thereby conscious control during motor learning (Capio, Poolton, Sit, Eguia, et al., 2013; 

Capio, Poolton, Sit, Holmstrom, et al., 2013; Maxwell et al., 2001; Poolton et al., 2005; Zhu 

et al., 2011b), (2) propensity for conscious control was measured using the MSRS (Masters et 

al., 2005) and (3) participants were subjected to a number of manipulations of conscious 
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control as part of a delayed retention and transfer phase. Freezing was gauged via movement 

variability. Performance was defined as mean radial error. 

Results of this study generally support our hypothesis. During practice, associations 

between conscious control and freezing emerged as a negative association between propensity 

for conscious control and movement variability in the error-strewn group. During delayed 

retention and transfer, the relationship between conscious control and freezing surfaced as 

main effects of group and test. Participants in the error-strewn group had lower movement 

variability than participants in the error-reduced group. During the pressure test – which 

increases conscious control (Baumeister, 1984; Masters, 1992) – movement variability was 

lower than in the other retention and transfer tests. These results indicate that conscious 

control is associated with freezing of mechanical degrees of freedom during motor learning. 

The current study is the first to purposely show an association between conscious 

control and freezing during learning. It therefore requires replication before conclusions can 

be drawn with confidence. There is still a chance that a factor other than conscious control 

was responsible for the observed effects. After all, no direct measure of conscious control 

currently exists. Even brain imagery, arguably the most direct method, does not support 

inference of cognitive processes (Poldrack, 2006, 2008). The current study does, however, 

contain abundant – and we argue sufficient – circumstantial evidence from which to infer that 

conscious control was responsible for the observed effects. First, propensity for conscious 

control and practice protocol manipulations are well-established methods of influencing 

conscious control (cf. Capio, Poolton, Sit, Eguia, et al., 2013; Capio, Poolton, Sit, Holmstrom, 

et al., 2013; Masters, 1992; Masters et al., 1993; Maxwell et al., 2000; Poolton et al., 2005). 

Second, the superior tone-counting accuracy displayed by the error-reduced group confirms 

that the practice protocol manipulation indeed influenced reliance on conscious control, rather 
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than any other factor. It therefore seems likely that conscious control accounts for the 

observed effects. 

Altogether, results of this study allow a re-interpretation of conscious control as a 

movement constraint rather than a prescription mechanism. The constraints-led perspective on 

motor learning (Davids, Button, & Bennett, 2008; Renshaw, Chow, Davids, & Hammond, 

2010) proposes that learning emerges out of the interplay between individual, environmental 

and task constraints of practice. The interactions found between personality predispositions 

(i.e. individual constraints) and the implicit learning intervention (i.e. task constraints) align 

nicely with the constraints-led perspective. Results of this study therefore indicate that 

conscious control may emerge from the interplay between constraints and/or it may itself act 

as a constraint on the movement system, as attested by its association with freezing. 

Although less relevant for the current research aim, some interesting effects of 

conscious control on motor performance emerged. During practice, conscious control 

propensity was positively associated with performance in the error-strewn group. However, 

during practice and during retention, conscious control propensity was negatively associated 

with performance in the error-reduced group. These results mimic speculations by Tse and 

van Ginneken (2017) that motor performance is best when trait and state levels of conscious 

control are aligned.  

Future research is required to examine the association between conscious control and 

freezing in more detail. As many different measures of freezing are available – e.g. inter-joint 

correlations (Vereijken et al., 1992), joint ranges of motion (Caillou et al., 2002), cluster 

analysis (Lee et al., 2014), dimensionality of state space (Newell et al., 2003) and movement 

variability (Higuchi et al., 2002) – future studies could unpick freezing. It may for example be 

investigated whether freezing takes place uniformly or is concentrated in particular joints. 
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Through these efforts, it may be possible to investigate whether results of the current study 

can be replicated and better understood. 
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Figure 1. The learning curves both groups. Top: The development of movement variability across practice 
blocks. Bottom: The development of mean radial error across practice blocks. Error bars represent standard 

error.  
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Figure 2. The interaction between group and MSRS score on movement variability during practice.  

 

 

Page 24 of 43Journal of Motor Behavior

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 3. The interaction between group and MSRS score on performance during practice.  
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Figure 4. The main effect of group on movement variability during retention and transfer. Error bars 
represent standard error.  
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Figure 5. The main effect of test on movement variability during retention and transfer. Error bars represent 
standard error.  
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Figure 6. The main effect of test on performance during retention and transfer. Error bars represent 
standard error.  
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Figure 7. The interaction between group and MSRS score on performance during retention and transfer.  
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Appendix A – Movement Variability 

This appendix describes how mean Euclidean distance (MUD) – our measure of 

movement variability – was determined. All kinematic data was processed using Matlab 

version R2012a. Position data of all markers on the body was low-pass filtered via a 2
nd

 order 

Butterworth filter with a cutoff value of 10 Hz, preserving more than 99% of the signal.  

Figure A1 shows the experimental setup and placement of the reflective markers. 

Figure A2 shows how the moment of release was determined. The raw data of the ball (Figure 

A2.A) contained kinematics of throw and flight. First, it was estimated which frames had a 

vertical acceleration equal to the gravitational acceleration of 9.81m/s
2
. The first frame on this 

list – as indicated by the arrow in Figure A2.B was deemed to be reasonably close to the 

moment of release. Based on this estimation, frames were divided into before- and after 

release. In Figure A2.C the frames before release are indicated with a stick figure of the 

throwing arm. The data of the ball was then extrapolated to create an informed estimation of 

where the ball marker would have been had it not been released (Figure A2.D). This was done 

by fitting a second order polynomial through the ball marker data before release (Figure 

A2.E). The same was done for the ball marker data after release, with the exception that 

instead of extrapolating forward in time, the extrapolation was done backwards. Hence, it 

could be estimated where the ball would have been had it already been released. Similar to 

Lohse, Jones, Healy, and Sherwood (2014), the intersection between the two sets of 

extrapolated data was used to determine the moment of release, as indicated by the arrow in 

Figure A2.F. 

Based on the moment of release, data of the last 200ms before release was selected for 

further analysis (Figure A3.A). To guard against the influence of changes in seating position, 

the origin of the reference frame was placed at the average position of the shoulder marker. 
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Throws for which the forward acceleration phase was less than 200ms were excluded from 

the analysis (< 0.1% of throws). By comparing the marker position of all markers between 

trials (see Figure A3.B to E), measures of Euclidean distance were obtained. The average of 

these comparisons within a block was the MUD (cm) for that block.

Fig. A1. (Left) The experimental setup showing the 30cm high stool, the smallest target box and 2 of 

the Qualysis cameras. (Right) The markers on shoulder and elbow (acromion- and olecranon process) 

and writst (radial styloid) as well as the hand (reflective golf-ball).  
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Fig. A2. Determination of the moment of release from A) the raw data, B) first frame where a vertical 

acceleration of 9.81m/s
2
 was registered, C) a first approximation of frames before- and after release, 

D) and E) extrapolation of ball marker data and F) determination of release via cross section of 
extrapolated data before- and after release. 
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Fig. A3. Two example of Euclidean distance, with A) data of 1 trial, B) overlapping data of 2 similar 

trials with C) low Euclidean distance and D) overlapping data of 2 dissimilar trials with E) high 

Euclidean distance. 
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Appendix B – AIC values different models 

 This appendix describes AIC values obtained after adding factors to GLMMs performed 

in this study. In accordance with Twisk (2006), a main model incuding the effects of group and 

MSRS score was used first, after which effects of practice block, test condition, order and 

different interaction were added in a stepwise fashion. If a factor lowered AIC by 2 points, it was 

retained in the model. If it did not lower AIC by 2, it was removed from the model before the 

next factor was added. AIC values of factors included in the best-fitting model are written bold. 

Practice  

Practice Movement Variability Mean Radial 

Error 

Main model: Group and MSRS scores 300.29 1338.22 

Practice block 291.97 1302.46 

Group x MSRS scores 287.06 1279.29 

Group x Practice block 292.81 1260.51 
MSRS scores x Practice block 318.86 1268.43 

Group x MSRS scores x Practice block 344.59 1264.25 

 

Retention and Transfer 

Retention and Transfer Movement Variability Mean Radial 

Error 

Main model: Group and MSRS scores 284.79 1338.24 

Test condition 281.08 1275.28 

Order 286.36 1269.18 

Group x MSRS scores 283.72 1266.15 

Group x Test condition 299.46 1249.31 

MSRS scores x Test condition 312.52 1258.77 

Group x Order 292.86 1251.21 

MSRS scores x Order 303.99 1254.18 

Test condition x Order 288.94 1261.53 

Group x MSRS scores x Test condition 340.47 1258.81 

Group x MSRS scores x Order 325.52 1259.93 

Group x Test condition x Order 295.45 1266.78 

MSRS scores x Test condition x Order 334.87 1257.35 

Group x MSRS scores x Test condition x 

Order 

379.28 1259.27 
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Tone counting accuracy 

AICs for the models predicting tone-counting accuracy were 265.39 for the main model 

including only the main effects of group and MSRS scores and 264.71 when their interaction was 

added. The factor test condition and the order effect were irrelevant, as tone-counting accuracy 

was measured only in 1 of the transfer tests. The interaction effect was not included in the best-

fitting model, because its inclusion decreased the AIC value by less than 2. 
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Appendix C – Learning Curves and between-block comparisons 

 This appendix contains information for those readers interested in the learning curves 

and between-block comparisons of mean radial error and movement variability during the 

practice phase. The between-block comparisons are provided using log transformed as well as 

untransformed data. 

 

Fig. C1. Mean radial error in all blocks during practice. Error bars represent standard error. 

 

Fig. C2. Mean radial error of both groups in all blocks during practice. Error bars represent standard 

error. 
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Fig. C3. Movement variability in all blocks during practice. Error bars represent standard error. 

 

Fig. C4. Movement variability of both groups in all blocks during practice. Error bars represent 

standard error. 
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Practice 

Mean Radial 

Error 

(Untransformed) 

Block 2 

M = 27.08 

SD = 5.79 

Block 3 

M = 24.95 

SD = 4.56 

Block 4 

M = 24.03 

SD = 4.44 

Block 5 

M = 23.55 

SD =  3.57 

Block 6 

M = 23.55 

SD = 4.48 

Block 1 

M = 29.95 

SD =  7.57 

MD = 2.87 

SEMD = 1.08 

t = 2.65 

p < .05 

95% CI = 
[.67 5.06] 

MD = 5.00 

SEMD = 1.20 

t = 4.17 

p < .001 

95% CI = 
[2.57 7.43] 

MD = 5.91 

SEMD = 1.15 

t = 5.12 

p < .001 

95% CI = 
[3.57 8.25] 

MD = 6.39 

SEMD = 1.22 

t = 5.25 

p < .001 

95% CI = 
[3.92 8.87] 

MD = 6.39 

SEMD = 1.22 

t = 5.22 

p < .001 

95% CI = 
[3.91 8.88] 

Block 2 
 

 MD = 2.13 
SEMD = .69 

t = 3.08 

p < .01 

95% CI = 

[.73 3.54] 

MD = 3.05 
SEMD = .70 

t = 4.32 

p < .001 

95% CI = 

[1.61 4.48] 

MD = 3.53 
SEMD = .81 

t = 4.34 

p < .001 

95% CI = 

[1.88 5.18] 

MD = 3.53 
SEMD = .84 

t = 4.19 

p < .001 

95% CI = 

[1.82 5.24] 

Block 3  MD = .91 

SEMD = .56 

t = 1.58 

p = .12 

95% CI = 

[-.26 2.09] 

MD = 1.39 

SEMD = .60 

t = 2.34 

p < .05 

95% CI = 

[.18 2.60] 

MD = 1.39 

SEMD =  

t = 2.27 

p  < .05 

95% CI = 

[.15 2.64] 

Block 4  MD = .48 

SEMD = .55 

t = .87 
p  = .39 

95% CI = 

[-.65 1.161] 

MD = .48 

SEMD = .47 

t = 1.02 
p  = .31 

95% CI = 

[-.47 1.43] 

Block 5  MD = .001 

SEMD = .40 

t = .01 

p = .99 

95% CI = 

[-.82 .82] 

Table C1. All between-block comparisons for the mean radial error data 

 

Practice 

Mean Radial 
Error 

(Transformed) 

Block 2 

M = 1.42 
SD = .10 

Block 3 

M = 1.39 
SD = .08 

Block 4 

M = 1.37 
SD = .08 

Block 5 

M = 1.37 
SD = .07 

Block 6 

M = 1.36 
SD = .09 

Block 1 

M = 1.47 

SD = .10 

MD = .04 

SEMD = .01 

t = 3.00 
p < .01 

95% CI = 

[.01 .07] 

MD = .08 

SEMD = .01 

t = 5.11 
p < .001 

95% CI = 

[.05 .11] 

MD = .09 

SEMD = .01 

t = 6.23 
p < .001 

95% CI = 

[.06 .12] 

MD = .10 

SEMD = .02 

t = 6.38 
p < .001 

95% CI = 

[.07 .13] 

MD = .10 

SEMD = .02 

t = 6.31 
p < .001 

95% CI = 

[.07 .13] 

Block 2 

 

 MD = .03 

SEMD = .01 

t = 2.78 

p < .01 

95% CI = 

[.01 .06] 

MD = .05 

SEMD = .01 

t = 3.95 

p < .001 

95% CI = 

[.02 .07] 

MD = .05 

SEMD = .01 

t = 4.13 

p < .001 

95% CI = 

[.03 .08] 

MD = .06 

SEMD = .01 

t = 4.04 

p < .001 

95% CI = 

[.03 .09] 

Block 3  MD = .02 MD = .02 MD = .03 
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SEMD = .01 

t = 1.69 

p = .10 

95% CI = 

[-.004 .04] 

SEMD = .01 

t = 2.27 

p < .05 

95% CI = 

[.002 .04] 

SEMD = .01 

t = 2.40 

p < .05 

95% CI = 

[.004 .05] 

Block 4  MD = .01 

SEMD = .01 

t = .60 

p = .55 
95% CI = 

[-.01 .03] 

MD = .01 

SEMD = .01 

t = 1.1 

p = .28 
95% CI = 

[-.01 .03] 

Block 5  MD = .01 

SEMD = .01 

t = .44 

p = .66 

95% CI = 

[-.01 .02] 

Table C2. All between-block comparisons for the log transformed mean radial error data 

 

Practice 

Movement  

Variability 

(Untransformed) 

Block 2 

M = 1.87 

SD = .46 

Block 3 

M = 1.74 

SD = .31 

Block 4 

M = 1.78 

SD = .46 

Block 5 

M = 1.75 

SD = .42 

Block 6 

M = 1.78 

SD = .50 

Block 1 

M = 2.00 

SD = .61 

MD = .13 

SEMD = .10 

t = 1.35 

p = .19 
95% CI = 

[-.06 .33] 

MD = .26 

SEMD = .08 

t = 3.10 

p < .01 
95% CI = 

[.09 .43] 

MD = .22 

SEMD = .08 

t = 2.65 

p < .05 
95% CI = 

[.05 .39] 

MD = .25 

SEMD = .08 

t = 3.29 

p < .01 
95% CI = 

[.10 .41] 

MD = .22 

SEMD = .11 

t = 2.10 

p < .05 
95% CI = 

[.01 .44] 

Block 2 

 

 MD = .13 

SEMD = .06 

t = 2.15 

p < .05 

95% CI = 

[.01 .25] 

MD = .09 

SEMD = .06 

t = 1.54 

p = .13 

95% CI = 

[-.03 .20] 

MD = .12 

SEMD = .06 

t = 1.86 

p = .07 

95% CI = 

[-.01 .25] 

MD = .09 

SEMD = .07 

t = 1.32 

p = 20 

95% CI = 

[-.05 .23] 

Block 3  MD = -.04 

SEMD = .05 

t = -.81 
p = .43 

95% CI = 

[-.15 .06] 

MD = -.01 

SEMD = .06 

t = -.21 
p = .84 

95% CI = 

[-.13 .10] 

MD = -.04 

SEMD = .06 

t = -.69 
p = .49 

95% CI = 

[-.16 .08] 

Block 4  MD = .03 

SEMD = .04 
t = .77 

p = .45 

95% CI = 
[-.05 .11] 

MD = .002 

SEMD = .07 
t = .03 

p = .98 

95% CI = 
[-.13 .14] 

Block 5  MD = -.03 

SEMD = .07 

t = -.42 

p = .68 

95% CI = 
[-.16 .11] 
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Table C3. All between-block comparisons for the movement variability data 

Practice 
Movement  

Variability 

(Transformed) 

Block 2 
M = .26 

SD = .10 

Block 3 
M = .23 

SD = .08 

Block 4 
M = .24 

SD = .11 

Block 5 
M = .23 

SD = .10 

Block 6 
M = .23 

SD = .13 

Block 1 

M = .29 

SD = .11 

MD = .03 

SEMD = .02 

t = 1.50 

p = .14 

95% CI = 

[-.01 .06] 

MD = .05 

SEMD = .01 

t = 3.61 

p < .01 

95% CI = 

[.02 .08] 

MD = .05 

SEMD = .02 

t = 3.18 

p < .01 

95% CI = 

[.02 .08] 

MD = .05 

SEMD = .01 

t = 3.82 

p < .01 

95% CI = 

[.03 .08] 

MD = .05 

SEMD = .02 

t = 2.70 

p < .05 

95% CI = 

[.01 .09] 

Block 2 

 

 MD = .03 

SEMD = .01 

t = 2.14 

p < .05 

95% CI = 
[.001 .05] 

MD = .02 

SEMD = .01 

t = 1.69 

p = .10 

95% CI = 
[-.005 .05] 

MD = .03 

SEMD = .01 

t = 1.99 

p = .054 

95% CI = 
[-.001 .06] 

MD = .03 

SEMD = .02 

t = 1.71 

p  = .10 

95% CI = 
[-.005 .06] 

Block 3  MD = -.004 
SEMD = .01 

t = -.35 

p = .73 

95% CI = 

[-.03 .02] 

MD = .002 
SEMD = .01 

t = .15 

p = .88 

95% CI = 

[-.02 .03] 

MD = .001 
SEMD = .01 

t = .05 

p =.96 

95% CI = 

[-.03 .03] 

Block 4  MD = .006 

SEMD = .01 

t = .60 

p = .55 

95% CI = 

[-.01 .03] 

MD = .005 

SEMD = .01 

t = .32 

p = .75 

95% CI = 

[-.03 .03] 

Block 5  MD = -.001 

SEMD = .02 

t = -.09 
p = .93 

95% CI = 

[-.03 .03] 

Table C4. All between-block comparisons for the log transformed movement variability data 
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Appendix D – Between-test comparisons 

 This appendix describes all between-test comparison in the retention and transfer 

phase regarding movement variability and mean radial error. The comparisons are provided 

for the log transformed as well as for the untransformed data.  

Retention and 

Transfer 

Mean Radial 
Error 

(Untransformed) 

Short  

Distance 

M = 21.53 
SD = 4.08 

 

Far  

Distance 

M = 28.62 
SD = 5.10 

 

Tone 

Counting 

M = 23.47 
SD = 5.58 

 

Skill 

Focus 

M = 24.56 
SD = 5.12 

 

Pressure 

 

M = 22.19 
SD = 4.22 

 

Retention 

M = 26.80 

SD = 4.35 

 

MD = 5.27 

SEMD = .76 

t = 7.03 

p < .001 

95% CI = 

[3.75 6.79] 

MD = -1.82 

SEMD = .75 

t = -2.42 

p < .05 

95% CI = 

[-3.35 -.30] 

MD = 3.33 

SEMD = .89 

t = 3.75 

p < .01 

95% CI = 

[1.52 5.13] 

MD = 2.24 

SEMD = .70 

t = 3.19 

p < .01 

95% CI = 

[.81 3.66] 

MD = 4.61 

SEMD = .62 

t = 7.42 

p < .001 

95% CI = 

[3.35 5.88] 

Short  

Distance 

 

 MD = -7.09 

SEMD = .90 

t = -7.90 

p < .001 

95% CI = 
[-8.91  

-5.27] 

MD = -1.94 

SEMD = .72 

t = -2.68 

p < .05 

95% CI = 
[-3.41 -.47] 

MD = -3.03 

SEMD = .79 

t = -3.83 

p < .001 

95% CI = 
[-4.64  

-1.42] 

MD = -.66 

SEMD = .69 

t = -.95 

p = .35 

95% CI = 
[-2.05 .74] 

Far  
Distance 

 MD = 5.15 
SEMD = 1.03 

t = 5.00 

p < .001 

95% CI = 

[3.06 7.24] 

MD = 4.06 
SEMD = .79 

t = 5.11 

p < .001 

95% CI = 

[2.45 5.67] 

MD = 6.43 
SEMD = .66 

t = 9.70 

p < .001 

95% CI = 

[5.09 7.78] 

Tone  

Counting 

 MD = -1.09 

SEMD = .85 

t = -1.29 

p = .21 

95% CI = 

[-2.81 .63] 

MD = 1.29 

SEMD = .75 

t = 1.71 

p = .10 

95% CI = 

[-.24 2.81] 

Skill 

Focus 

 MD = 2.38 

SEMD = .57 

t = 4.17 
p < .001 

95% CI = 

[1.22 3.53] 

Table D1. The between-test comparisons for the mean radial error data 

Retention and 

Transfer 
Mean Radial 

Error 

(Transformed) 

Short  

Distance 
M = 1.32 

SD = .09 

Far  

Distance 
M = 1.45 

SD = .08 

Tone 

Counting 
M = 1.36 

SD = .10 

Skill 

Focus 
M = 1.38 

SD = .09 

Pressure 

 
M = 1.34 

SD = .08 
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Retention 

M = 1.42 

SD = .07 

MD = .10 

SEMD = .01 

t = 6.90 

p < .001 

95% CI = 

[.07 .13] 

MD = -.03 

SEMD = .01 

t = -2.14 

p < .05 

95% CI = 

[-.05 -.003] 

MD = .06 

SEMD = .01 

t = 4.21 

p < .001 

95% CI = 

[.03 .09] 

MD = .04 

SEMD = .01 

t = 3.35 

p < .01 

95% CI = 

[.02 .07] 

MD = .08 

SEMD = .01 

t = 7.55 

p < .001 

95% CI = 

[.06 .11] 

Short  

Distance 

 

 MD = -.12 

SEMD = .02 

t = -7.50 
p < .001 

95% CI = 

[-.16 -.09] 

MD = -.03 

SEMD = .01 

t = -2.56 
p < .05 

95% CI = 

[-.06 -.01] 

MD = -.06 

SEMD = .01 

t = -3.90 
p < .001 

95% CI = 

[-.09 -.03] 

MD = -.01 

SEMD = .01 

t = -.97 
p = .34 

95% CI = 

[-.04 .01] 

Far  

Distance 

 MD = .09 

SEMD = .02 

t = 5.36 

p < .001 

95% CI = 

[.06 .12] 

MD = .07 

SEMD = .01 

t = 5.32 

p < .001 

95% CI = 

[.04 .09] 

MD = .11 

SEMD = .01 

t = 9.40 

p < .001 

95% CI = 

[.09 .14] 

Tone  

Counting 

 MD = -.02 

SEMD = .01 

t = -1.56 

p = .13 
95% CI = 

[-.05 .01] 

MD = .02 

SEMD = .01 

t = 1.59 

p = .12 
95% CI = 

[-.01 .05] 

Skill 
Focus 

 MD = .04 
SEMD = .01 

t = 4.45 

p < .001 

95% CI = 

[.02 .06] 

Table D2. The between-test comparisons for the log transformed mean radial error data 

Retention and 

Transfer 

Movement  
Variability 

(Untransformed) 

Short  

Distance 

M = 1.78 
SD = .46 

 

Far  

Distance 

M = 1.75 
SD = .43 

 

Tone 

Counting 

M = 1.60 
SD = .44 

 

Skill  

Focus 

M = 1.77 
SD = .43 

 

Pressure 

 

M = 1.45 
SD = .38 

 

Retention 

M = 1.79 

SD = .44 

 

MD = .01 

SEMD = .06 

t = .13 

p = .90 

95% CI = 

[-.11 .13] 

MD = .03 

SEMD =.06 

t = .64 

p = .52 

95% CI = 

[-.08 .15] 

MD = .19 

SEMD = .08 

t = 2.25 

p < .05 

95% CI = 

[.02 .36] 

MD = .02 

SEMD = .07 

t = .30 

p = .77 

95% CI = 

[-.12 .16] 

MD = .34 

SEMD = .06 

t = 5.35 

p < .001 

95% CI = 

[.21 .46] 

Short  

Distance 

 

 MD = .03 

SEMD = .06 

t = .47 
p = .54 

95% CI = 

[-.09 .15] 

MD = .18 

SEMD = .09 

t = 1.96 
p = .06 

95% CI = 

[-.01 .37] 

MD = .01 

SEMD = .06 

t = .21 
p = .83 

95% CI = 

[-.11 .14] 

MD = .33 

SEMD = .06 

t = 5.80 
p < .001 

95% CI = 

[.21 .45] 

Far  

Distance 

 MD = .16 

SEMD = .08 
t = 2.05 

p < .05 

MD = -.14 

SEMD = .06 
t = -.23 

p = .82 

MD = .30 

SEMD = .05 
t = 5.97 

p < .001 
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95% CI = 

[.00 .31] 

95% CI = 

[-.13 .11] 

95% CI = 

[.20 .41] 

Tone  

Counting 

 MD = -.17 

SEMD = .09 

t = -1.92 

p = .06 

95% CI = 

[-.35 .01] 

MD = .15 

SEMD = .07 

t = 2.15 

p < .05 

95% CI = 

[.01 .29] 

Skill 

Focus 

 MD = .32 

SEMD = .06 

t = 5.04 
p < .001 

95% CI = 

[.19 .44] 

Table D3. The between-test comparisons for the movement variability data 

Retention and 

Transfer 
Movement 

Variability 

(Transformed) 

Short  

Distance 
M = .24 

SD = .11 

Far  

Distance 
M = .23 

SD = .11 

Tone 

Counting 
M = .19 

SD = .11 

Skill 

Focus 
M = .24 

SD = .10 

Pressure 

 
M = .15 

SD = .12 

Retention 

M = .24 

SD = .11 

MD = .003 

SEMD = .01 

t = .19 

p = .95 

95% CI = 

[.03 .03] 

MD = .01 

SEMD = .01 

t = .65 

p = .52 

95% CI = 

[-.02 .03] 

MD = .05 

SEMD = .02 

t = 2.60 

p < .05 

95% CI = 

[.01 .09] 

MD = .004 

SEMD = .02 

t = .23 

p = .82 

95% CI = 

[-.03 .04] 

MD = .09 

SEMD = .01 

t = 6.28 

p < .001 

95% CI = 

[.06 .12] 

Short  

Distance 

 

 MD = .01 

SEMD = .01 

t = .40 

p = .70 

95% CI = 
[-.02 .03] 

MD = .05 

SEMD = .02 

t = 2.15 

p < .05 

95% CI = 
[.003 .09] 

MD = .001 

SEMD = .02 

t = .07 

p = .95 

95% CI = 
[-.03 .03] 

MD = .09 

SEMD = .01 

t = 6.13 

p < .001 

95% CI = 
[.06 .12] 

Far  
Distance 

 MD = .04 
SEMD = .02 

t = 2.38 

p < .05 
95% CI = 

[.01 .08] 

MD = -.004 
SEMD = .01 

t = -.33 

p = .74 
95% CI = 

[-.03 .02] 

MD = .08 
SEMD = .01 

t = 6.25 

p < .001 
95% CI = 

[.06 .11] 

Tone  

Counting 

 MD = -.05 

SEMD = .02 

t = -2.44 

p < .05 
95% CI = 

[-.09 -.01] 

MD = .04 

SEMD = .02 

t = 2.28 

p < .05 
95% CI = 

[.005 .08] 

Skill 

Focus 

 MD = .09 

SEMD = .02 

t = 5.64 
p < .001 

95% CI = 

[.06 .12] 

Table D4. The between-test comparisons for the log transformed movement variability data 
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