9,520 research outputs found

    The a-function in six dimensions

    Get PDF
    The a-function is a proposed quantity defined in even dimensions which has a monotonic behaviour along RG flows, related to the beta-functions via a gradient flow equation. We study the a-function for a general scalar theory in six dimensions, using the beta-functions up to three-loop order for both the MSbar and MOM schemes (the latter presented here for the first time at three loops).Comment: 27 pages, seven figures, uses axodraw. Minor improvements in wordin

    Reducing Polarization Mode Dispersion With Controlled Polarization Rotations

    Get PDF
    One of the fundamental limitations to high bit rate, long distance, telecommunication in optical fibers is Polarization Mode Dispersion (PMD). Here we introduce a conceptually new method to reduce PMD in optical fibers by carrying out controlled rotations of polarization at predetermined locations along the fiber. The distance between these controlled polarization rotations must be less than both the beat length and the mode coupling length of the fiber. This method can also be combined with the method in which the fiber is spun while it drawn. The incidence of imperfections on the efficiency of the method is analysed.Comment: 4 page

    Microstrip resonator for microwaves with controllable polarization

    Full text link
    In this work the authors implemented a resonator based upon microstrip cavities that permits the generation of microwaves with arbitrary polarization. Design, simulation, and implementation of the resonators were performed using standard printed circuit boards. The electric field distribution was mapped using a scanning probe cavity perturbation technique. Electron spin resonance using a standard marker was carried out in order to verify the polarization control from linear to circular.Comment: 3 pages, 3 figures, submitted to Appl. Phys. Let

    First critical field measurements of superconducting films by third harmonic analysis

    Full text link
    The temperature behaviour of the first critical field (BC1B_{C1}) of superconducting thin film samples can be determined with high accuracy using an inductive and contactless method. Driving a sinusoidal current in a single coil placed in front of the sample, a non zero third harmonic voltage V3V_{3} is induced in it when Abrikosov vortices enter the sample. Conditions to be satisfied for the quantitative evaluation of BC1B_{C1} using this technique are detailed. As validation test, different type II superconductors (Nb, NbN, MgB2_{2} and Y1_{1}Ba2_{2}Cu3_{3}O7d_{7-d} under the form of thin films) have been measured. The comparison between experimental results, data presented in literature and theoretical predictions is presented and discussed.Comment: to be published in Journal of Applied Physic

    Management practices to conserve energy in Ohio greenhouses

    Get PDF

    Density minimum and liquid-liquid phase transition

    Full text link
    We present a high-resolution computer simulation study of the equation of state of ST2 water, evaluating the liquid-state properties at 2718 state points, and precisely locating the liquid-liquid critical point (LLCP) occurring in this model. We are thereby able to reveal the interconnected set of density anomalies, spinodal instabilities and response function extrema that occur in the vicinity of a LLCP for the case of a realistic, off-lattice model of a liquid with local tetrahedral order. In particular, we unambiguously identify a density minimum in the liquid state, define its relationship to other anomalies, and show that it arises due to the approach of the liquid structure to a defect-free random tetrahedral network of hydrogen bonds.Comment: 5 pages, 4 figure

    A Protocol for Ecosystem Management

    Get PDF
    corecore