1,063 research outputs found

    Node-like excitations in superconducting PbMo6S8 probed by scanning tunneling spectroscopy

    Full text link
    We present the first scanning tunneling spectroscopy study on the Chevrel phase PbMo6S8, an extreme type II superconductor with a coherence length only slightly larger than in high-Tc cuprates. Tunneling spectra measured on atomically flat terraces are spatially homogeneous and show well-defined coherence peaks. The low-energy spectral weight, the zero bias conductance and the temperature dependence of the gap are incompatible with a conventional isotropic s-wave interpretation, revealing the presence of low-energy excitations in the superconducting state. We show that our data are consistent with the presence of nodes in the superconducting gap.Comment: To appear in PRB; 5 pages, 4 figure

    Superconducting properties of the In-substituted topological crystalline insulator, SnTe

    Get PDF
    We report detailed investigations of the properties of a superconductor obtained by substituting In at the Sn site in the topological crystalline insulator (TCI), SnTe. Transport, magnetization and heat capacity measurements have been performed on crystals of Sn0.6_{0.6}In0.4_{0.4}Te, which is shown to be a bulk superconductor with TconsetT_c^{\rm{onset}} at ∼4.70(5)\sim4.70(5)~K and TczeroT_c^{\rm{zero}} at ∼3.50(5)\sim3.50(5)~K. The upper and lower critical fields are estimated to be μ0Hc2(0)=1.42(3)\mu_0H_{c2}(0)=1.42(3)~T and μ0Hc1(0)=0.90(3)\mu_0H_{c1}(0)=0.90(3)~mT respectively, while κ=56.4(8)\kappa=56.4(8) indicates this material is a strongly type II superconductor

    Electrical conductivity beyond linear response in layered superconductors under magnetic field

    Full text link
    The time-dependent Ginzburg-Landau approach is used to investigate nonlinear response of a strongly type-II superconductor. The dissipation takes a form of the flux flow which is quantitatively studied beyond linear response. Thermal fluctuations, represented by the Langevin white noise, are assumed to be strong enough to melt the Abrikosov vortex lattice created by the magnetic field into a moving vortex liquid and marginalize the effects of the vortex pinning by inhomogeneities. The layered structure of the superconductor is accounted for by means of the Lawrence-Doniach model. The nonlinear interaction term in dynamics is treated within Gaussian approximation and we go beyond the often used lowest Landau level approximation to treat arbitrary magnetic fields. The I-V curve is calculated for arbitrary temperature and the results are compared to experimental data on high-TcT_{c} superconductor YBa2_{2}Cu3_{3}O%_{7-\delta}.Comment: 8 pages, 3 figure

    Carbon isotope effect in superconducting MgCNi_3

    Full text link
    The effect of Carbon isotope substitution on T_c in the intermetallic perovskite superconductor MgCNi_3 is reported. Four independent groups of samples were synthesized and characterized. The average T_c for the Carbon-12 samples was found to be 7.12(2) K and the average T_c for the Carbon-13 samples was found to be 6.82(2) K. The resulting carbon isotope effect coefficient is alfa_C = 0.54(3). This indicates that carbon-based phonons play a critical role in the presence of superconductivity in this compound.Comment: To be published in Phys. Rev. B. 4 pages, 1 figur

    Magnetization hysteresis and time decay measurements in FeSe0.50_{0.50}Te0.50_{0.50} : Evidence for fluctuation in mean free path induced pinning

    Full text link
    We present results of magnetic measurements relating to vortex phase diagram in a single crystal of FeSe0.5_{0.5}Te0.5_{0.5} which displays second magnetization peak anomaly for H∥cH \parallel c. The possible role of the crystalline anisotropy on vortex pinning is explored via magnetic torque magnetometry. We present evidence in favor of pinning related to spatial variations of the charge carrier mean free path leading to small bundle vortex pinning by randomly distributed (weak) pinning centers for both H∥cH \parallel c and H⊥cH \perp c. This is further corroborated using magnetization data for H∥cH \parallel c in a single crystal of FeSe0.35_{0.35}Te0.65_{0.65}. Dynamical response across second magnetization peak (SMP) anomaly in FeSe0.5_{0.5}Te0.5_{0.5} has been compared with that across the well researched phenomenon of peak effect (PE) in a single crystal of CeRu2_2.Comment: 11 figures, provided additional data in another sample, added Fig.

    Electron Magnetic Resonance: The Modified Bloch Equation

    Full text link
    We find a modified Bloch equation for the electronic magnetic moment when the magnetic moment explicitly contains a diamagnetic contribution (a magnetic field induced magnetic moment arising from the electronic orbital angular momentum) in addition to the intrinsic magnetic moment of the electron. The modified Bloch is coupled to equations of motion for the position and momentum operators. In the presence of static and time varying magnetic field components, the magnetic moment oscillates out of phase with the magnetic field and power is absorbed by virtue of the magnetic field induced magnetic moment, even in the absence of coupling to the environment. We explicitly work out the spectrum and absorption for the case of a pp state electron

    Quasiparticle scattering time in superconducting films: from dirty to clean limit

    Full text link
    We study the quasiparticle energy relaxation processes in superconducting Nb films of different thicknesses corresponding to different electron mean free paths in a state far from equilibrium, that is the highly dissipative flux-flow state driven up to the instability point. From the measured current-voltage curves we derive the vortex critical velocity v∗v^{*} for several temperatures. From the v∗(T)v^{*}(T) values, the quasiparticle energy relaxation time τϵ\tau_{\epsilon} is evaluated within the Larkin-Ovchinnikov model and numerical calculations of the quasiparticle energy relaxation rates are carried out to support the experimental findings. Besides the expected constant behavior of τϵ(T)\tau_{\epsilon}(T) for the dirty samples, we observe a strong temperature dependence of the quasiparticle energy relaxation time in the clean samples. This feature is associated with the increasing contribution from the electron-phonon scattering process as the dirty limit is approached from the clean regime

    Stable vortex-antivortex molecules in mesoscopic superconducting triangles

    Full text link
    A thermodynamically stable vortex-antivortex pattern has been revealed in mesoscopic type I superconducting triangles, contrary to type II superconductors where similar patterns are unstable. The stable vortex-antivortex "molecule" appears due to the interplay between two factors: a repulsive vortex-antivortex interaction in type I superconductors and the vortex confinement in the triangle.Comment: 5 pages, 4 figures, E-mail addresses: [email protected], [email protected], [email protected], [email protected]

    Measurement of corrosion content of archaeological lead artifacts by their Meissner response in the superconducting state; a new dating method

    Full text link
    Meissner fraction in the superconducting state of lead archaeological artifacts is used to evaluate the mass of the uncorroded metal in the sample. Knowing the total mass of the sample the mass of all corrosion products is established. It is shown that this mass correlates with the archaeological age of the lead artifacts over a time span of ~2500 years. Well-dated untreated lead samples from Tel-Dor, the Persian period, Caesarea, the Byzantine and the Crusader periods as well as contemporary data were used to establish the dating correlation. This new chemical dating method is apparently applicable to lead artifacts buried in soils with the pH>6.5. In such soils the corrosion process is very slow and the corrosion products, mainly PbO and PbCO3, accumulate over hundreds of years. The method presented is in principle non-destructive. (corresponding author: )Comment: File ARCH_4.pdf 14 pages including 1 table and 5 figure

    Time Ordering in Kicked Qubits

    Full text link
    We examine time ordering effects in strongly, suddenly perturbed two-state quantum systems (kicked qubits) by comparing results with time ordering to results without time ordering. Simple analytic expressions are given for state occupation amplitudes and probabilities for singly and multiply kicked qubits. We investigate the limit of no time ordering, which can differ in different representations.Comment: 26 pages, 5 figure
    • …
    corecore