74 research outputs found
Increasing Opportunities for Academic Talk for English Learners in the General Education Classroom
The purpose of this capstone project is to address the question, how can teachers increase opportunities for quality academic talk for English Learners in the general education classroom? This was answered by researching data pertaining to the population of English learners in United States public schools, as well as, how historical context, issues of social justice, and sociolinguistic factors all affect English learners. Included in the research is also theories, definitions, and the importance of academic talk for productive learning. Several methods for increasing academic talk in the general education classroom are discussed, specifically Accountable Talk with Talk Moves ( Michaels & OâConnor, 2015; Resnick, L. B., Asterhan, C. S. C., & Clarke, S. N., 2018). Theories of adult learning are applied in the creation of a three session professional development series (Knowles, 2005; Mezirow, 1997). The intended audience of these professional development sessions would be elementary general education classroom teachers and administrators whose student population has a high percentage or concentration of English learners. This method was chosen, because classroom teachers have unique opportunities to present English learners with authentic, content-based opportunities for academic talk that are capable of producing higher order thinking and cognitive development, as opposed to teachers of English learners whose expertise and instruction is based on second language acquisition and development ( Ernst-Slavit & Wenger, 2016; Hamann & Reeves, 2013; Resnick, Asterhan, & Clarke, 2018; Zwiers, OâHara, & Pritchard, 2014; Zwiers & Crawford, 2011
Foot orthoses and physiotherapy in the treatment of patellofemoral pain syndrome: A randomised clinical trial
<p>Abstract</p> <p>Background</p> <p>Patellofemoral pain syndrome is a highly prevalent musculoskeletal overuse condition that has a significant impact on participation in daily and physical activities. A recent systematic review highlighted the lack of high quality evidence from randomised controlled trials for the conservative management of patellofemoral pain syndrome. Although foot orthoses are a commonly used intervention for patellofemoral pain syndrome, only two pilot studies with short term follow up have been conducted into their clinical efficacy.</p> <p>Methods/design</p> <p>A randomised single-blinded clinical trial will be conducted to investigate the clinical efficacy and cost effectiveness of foot orthoses in the management of patellofemoral pain syndrome. One hundred and seventy-six participants aged 18â40 with anterior or retropatellar knee pain of non-traumatic origin and at least six weeks duration will be recruited from the greater Brisbane area in Queensland, Australia through print, radio and television advertising. Suitable participants will be randomly allocated to receive either foot orthoses, flat insoles, physiotherapy or a combined intervention of foot orthoses and physiotherapy, and will attend six visits with a physiotherapist over a 6 week period. Outcome will be measured at 6, 12 and 52 weeks using primary outcome measures of usual and worst pain visual analogue scale, patient perceived treatment effect, perceived global effect, the Functional Index Questionnaire, and the Anterior Knee Pain Scale. Secondary outcome measures will include the Lower Extremity Functional Scale, McGill Pain Questionnaire, 36-Item Short-Form Health Survey, Hospital Anxiety and Depression Scale, Patient-Specific Functional Scale, Physical Activity Level in the Previous Week, pressure pain threshold and physical measures of step and squat tests. Cost-effectiveness analysis will be based on treatment effectiveness against resource usage recorded in treatment logs and self-reported diaries.</p> <p>Discussion</p> <p>The randomised clinical trial will utilise high-quality methodologies in accordance with CONSORT guidelines, in order to contribute to the limited knowledge base regarding the clinical efficacy of foot orthoses in the management of patellofemoral pain syndrome, and provide practitioners with high-quality evidence upon which to base clinical decisions.</p> <p>Trial registration</p> <p>Australian Clinical Trials Registry ACTRN012605000463673</p> <p>ClinicalTrials.gov NCT00118521</p
Emergence and dissemination of antimicrobial resistance in Escherichia coli causing bloodstream infections in Norway in 2002-17: a nationwide, longitudinal, microbial population genomic study
Background The clonal diversity underpinning trends in multidrug resistant Escherichia coli causing bloodstream infections remains uncertain. We aimed to determine the contribution of individual clones to resistance over time, using large-scale genomics-based molecular epidemiology. Methods This was a longitudinal, E coli population, genomic, cohort study that sampled isolates from 22â512 E coli bloodstream infections included in the Norwegian surveillance programme on resistant microbes (NORM) from 2002 to 2017. 15 of 22 laboratories were able to share their isolates, and the first 22·5% of isolates from each year were requested. We used whole genome sequencing to infer the population structure (PopPUNK), and we investigated the clade composition of the dominant multidrug resistant clonal complex (CC)131 using genetic markers previously reported for sequence type (ST)131, effective population size (BEAST), and presence of determinants of antimicrobial resistance (ARIBA, PointFinder, and ResFinder databases) over time. We compared these features between the 2002â10 and 2011â17 time periods. We also compared our results with those of a longitudinal study from the UK done between 2001 and 2011. Findings Of the 3500 isolates requested from the participating laboratories, 3397 (97·1%) were received, of which 3254 (95·8%) were successfully sequenced and included in the analysis. A significant increase in the number of multidrug resistant CC131 isolates from 71 (5·6%) of 1277 in 2002â10 to 207 (10·5%) of 1977 in 2011â17 (p<0·0001), was the largest clonal expansion. CC131 was the most common clone in extended-spectrum ÎČ-lactamase (ESBL)-positive isolates (75 [58·6%] of 128) and fluoroquinolone non-susceptible isolates (148 [39·2%] of 378). Within CC131, clade A increased in prevalence from 2002, whereas the global multidrug resistant clade C2 was not observed until 2007. Multiple de-novo acquisitions of both blaCTX-M ESBL-encoding genes in clades A and C1 and gain of phenotypic fluoroquinolone non-susceptibility across the clade A phylogeny were observed. We estimated that exponential increases in the effective population sizes of clades A, C1, and C2 occurred in the mid-2000s, and in clade B a decade earlier. The rate of increase in the estimated effective population size of clade A (Ne=3147) was nearly ten-times that of C2 (Ne=345), with clade A over-represented in Norwegian CC131 isolates (75 [27·0%] of 278) compared with the UK study (8 [5·4%] of 147 isolates). Interpretation The early and sustained establishment of predominantly antimicrobial susceptible CC131 clade A isolates, relative to multidrug resistant clade C2 isolates, suggests that resistance is not necessary for clonal success. However, even in the low antibiotic use setting of Norway, resistance to important antimicrobial classes has rapidly been selected for in CC131 clade A isolates. This study shows the importance of genomic surveillance in uncovering the complex ecology underlying multidrug resistance dissemination and competition, which have implications for the design of strategies and interventions to control the spread of high-risk multidrug resistant clones. Funding Trond Mohn Foundation, European Research Council, Marie SkĆodowska-Curie Actions, and the Wellcome Trust
Euclid preparation: XXXI. The effect of the variations in photometric passbands on photometric-redshift accuracy
The technique of photometric redshifts has become essential for the exploitation of multi-band extragalactic surveys. While the requirements on photometric redshifts for the study of galaxy evolution mostly pertain to the precision and to the fraction of outliers, the most stringent requirement in their use in cosmology is on the accuracy, with a level of bias at the sub-percent level for the Euclid cosmology mission. A separate, and challenging, calibration process is needed to control the bias at this level of accuracy. The bias in photometric redshifts has several distinct origins that may not always be easily overcome. We identify here one source of bias linked to the spatial or time variability of the passbands used to determine the photometric colours of galaxies. We first quantified the effect as observed on several well-known photometric cameras, and found in particular that, due to the properties of optical filters, the redshifts of off-axis sources are usually overestimated. We show using simple simulations that the detailed and complex changes in the shape can be mostly ignored and that it is sufficient to know the mean wavelength of the passbands of each photometric observation to correct almost exactly for this bias; the key point is that this mean wavelength is independent of the spectral energy distribution of the source. We use this property to propose a correction that can be computationally efficiently implemented in some photometric-redshift algorithms, in particular template-fitting. We verified that our algorithm, implemented in the new photometric-redshift code Phosphoros, can effectively reduce the bias in photometric redshifts on real data using the CFHTLS T007 survey, with an average measured bias Îz over the redshift range 0.4 †z †0.7 decreasing by about 0.02, specifically from Îz â 0.04 to Îz â 0.02 around z = 0.5. Our algorithm is also able to produce corrected photometry for other applications
Euclid preparation XXXIV. The effect of linear redshift-space distortions in photometric galaxy clustering and its cross-correlation with cosmic shear
Context. The cosmological surveys that are planned for the current decade will provide us with unparalleled observations of the distribution of galaxies on cosmic scales, by means of which we can probe the underlying large-scale structure (LSS) of the Universe. This will allow us to test the concordance cosmological model and its extensions. However, precision pushes us to high levels of accuracy in the theoretical modelling of the LSS observables, so that no biases are introduced into the estimation of the cosmological parameters. In particular, effects such as redshift-space distortions (RSD) can become relevant in the computation of harmonic-space power spectra even for the clustering of the photometrically selected galaxies, as has previously been shown in literature.
Aims. In this work, we investigate the contribution of linear RSD, as formulated in the Limber approximation by a previous work, in forecast cosmological analyses with the photometric galaxy sample of the Euclid survey. We aim to assess their impact and to quantify the bias on the measurement of cosmological parameters that would be caused if this effect were neglected.
Methods. We performed this task by producing mock power spectra for photometric galaxy clustering and weak lensing, as is expected to be obtained from the Euclid survey. We then used a Markov chain Monte Carlo approach to obtain the posterior distributions of cosmological parameters from these simulated observations.
Results. When the linear RSD is neglected, significant biases are caused when galaxy correlations are used alone and when they are combined with cosmic shear in the so-called 3 Ă 2 pt approach. These biases can be equivalent to as much as 5Ï when an underlying ÎCDM cosmology is assumed. When the cosmological model is extended to include the equation-of-state parameters of dark energy, the extension parameters can be shifted by more than 1Ï
Euclid preparation: XXXV. Covariance model validation for the two-point correlation function of galaxy clusters
Aims. We validate a semi-analytical model for the covariance of the real-space two-point correlation function of galaxy clusters.
Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrated a simple model to accurately describe the clustering covariance. Then, we used this model to quantify the likelihood-analysis response to variations in the covariance, and we investigated the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters.
Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the two-point correlation function of galaxy clusters. By introducing a few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance with an accuracy of 10%, with differences of about 5% on the figure of merit of the cosmological parameters Ωm and Ï8. We also find that the covariance contains additional valuable information that is not present in the mean value, and the constraining power of cluster clustering can improve significantly when its cosmology dependence is accounted for. Finally, we find that the cosmological figure of merit can be further improved when mass binning is taken into account. Our results have significant implications for the derivation of cosmological constraints from the two-point clustering statistics of the Euclid survey of galaxy clusters
Euclid preparation: XXVII. A UV-NIR spectral atlas of compact planetary nebulae for wavelength calibration
The Euclid mission will conduct an extragalactic survey over 15 000 deg2 of the extragalactic sky. The spectroscopic channel of the Near-Infrared Spectrometer and Photometer (NISP) has a resolution of R ~ 450 for its blue and red grisms that collectively cover the 0.93-1.89 ÎŒm range. NISP will obtain spectroscopic redshifts for 3 Ă 107 galaxies for the experiments on galaxy clustering, baryonic acoustic oscillations, and redshift space distortion. The wavelength calibration must be accurate within 5 AÌ to avoid systematics in the redshifts and downstream cosmological parameters. The NISP pre-flight dispersion laws for the grisms were obtained on the ground using a Fabry-Perot etalon. Launch vibrations, zero gravity conditions, and thermal stabilisation may alter these dispersion laws, requiring an in-flight recalibration. To this end, we use the emission lines in the spectra of compact planetary nebulae (PNe), which were selected from a PN database. To ensure completeness of the PN sample, we developed a novel technique to identify compact and strong line emitters in Gaia spectroscopic data using the Gaia spectra shape coefficients. We obtained VLT/X-shooter spectra from 0.3 to 2.5 ÎŒm for 19 PNe in excellent seeing conditions and a wide slit, mimicking Euclid's slitless spectroscopy mode but with a ten times higher spectral resolution. Additional observations of one northern PN were obtained in the 0.80-1.90 ÎŒm range with the GMOS and GNIRS instruments at the Gemini North Observatory. The collected spectra were combined into an atlas of heliocentric vacuum wavelengths with a joint statistical and systematic accuracy of 0.1 AÌ in the optical and 0.3 AÌ in the near-infrared. The wavelength atlas and the related 1D and 2D spectra are made publicly available
Euclid preparation: XXVIII. Forecasts for ten different higher-order weak lensing statistics
Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale structure. The aim of the Higher-Order Weak Lensing Statistics (HOWLS) project is to assess, compare, and combine the constraining power of ten different HOS on a common set of Euclid-like mocks, derived from N-body simulations. In this first paper of the HOWLS series, we computed the nontomographic (Ωm, Ï 8) Fisher information for the one-point probability distribution function, peak counts, Minkowski functionals, Betti numbers, persistent homology Betti numbers and heatmap, and scattering transform coefficients, and we compare them to the shear and convergence two-point correlation functions in the absence of any systematic bias. We also include forecasts for three implementations of higher-order moments, but these cannot be robustly interpreted as the Gaussian likelihood assumption breaks down for these statistics. Taken individually, we find that each HOS outperforms the two-point statistics by a factor of around two in the precision of the forecasts with some variations across statistics and cosmological parameters. When combining all the HOS, this increases to a 4.5 times improvement, highlighting the immense potential of HOS for cosmic shear cosmological analyses with Euclid. The data used in this analysis are publicly released with the paper
- âŠ