56 research outputs found
Development and performance of the Clinical Trials ESSDAI (ClinTrialsESSDAI), consisting of frequently active clinical domains, in two randomised controlled trials in primary Sjogren's syndrome
Objective. To develop and evaluate the Clinical Trials EULAR Sjogren's Syndrome Disease Activity Index (ClinTrialsESSDAI), consisting of frequently active clinical domains of the ESSDAI, using two randomised controlled trials in primary Sjogren's syndrome (pSS). Methods. The ASAP-III trial in abatacept (80 pSS patients) and TRACTISS trial in rituximab (133 pSS patients) were analysed. The most frequently active clinical domains were selected, and ClinTrialsESSDAI total score was calculated using existing weightings of the ClinESSDAI (which also excludes the biological domain). Performance of the ClinTrialsESSDAI was compared to ClinESSDAI and ESSDAI. Responsiveness was assessed using standardised response mean (SRM), and discrimination was assessed using adjusted mean difference. Results. Besides the biological domain, the most frequently active domains were glandular, articular, haematological, constitutional, lymphadenopathy and cutaneous. These domains were selected for the ClinTrialsESSDAI. At primary endpoint visits, SRM values of ClinTrialsESSDAI, ClinESSDAI and ESSDAI were respectively -0.65/-0.59, -0.63/-0.59 and - 0.64/-0.61 for abatacept/placebo and -0.33/-0.13, -0.34/0.12 and -0.41/-0.16 for rituximab/placebo. Adjusted mean differences between active treatment and placebo groups were respectively -1.7, -1.4 and -1.1 for ASAP-III and -1.1, -1.1 and -1.2 for TRACTISS. Conclusion. The ClinTrialsESSDAI, consisting of six frequently active clinical domains of the ESSDAI, shows closely similar responsiveness and discrimination between treatment groups compared to the ClinESSDAI and ESSDAI. Therefore, this ClinTrialsESSDAI is not preferable to ClinESSDAI and ESSDAI for use as primary endpoint. A composite endpoint combining response at multiple clinically relevant items seems more suitable as primary study endpoint in pSS
Serum and Tissue Biomarkers Associated With Composite of Relevant Endpoints for Sj\uf6gren Syndrome (CRESS) and Sj\uf6gren Tool for Assessing Response (STAR) to B Cell–Targeted Therapy in the Trial of Anti–B Cell Therapy in Patients With Primary Sj\uf6gren Syndrome (TRACTISS)
\ua9 2023 The Authors. Arthritis & Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.Objective: This study aimed to identify peripheral and salivary gland (SG) biomarkers of response/resistance to B cell depletion based on the novel concise Composite of Relevant Endpoints for Sj\uf6gren Syndrome (cCRESS) and candidate Sj\uf6gren Tool for Assessing Response (STAR) composite endpoints. Methods: Longitudinal analysis of peripheral blood and SG biopsies was performed pre- and post-treatment from the Trial of Anti–B Cell Therapy in Patients With Primary Sj\uf6gren Syndrome (TRACTISS) combining flow cytometry immunophenotyping, serum cytokines, and SG bulk RNA sequencing. Results: Rituximab treatment prevented the worsening of SG inflammation observed in the placebo arm, by inhibiting the accumulation of class-switched memory B cells within the SG. Furthermore, rituximab significantly down-regulated genes involved in immune-cell recruitment, lymphoid organization alongside antigen presentation, and T cell co-stimulatory pathways. In the peripheral compartment, rituximab down-regulated immunoglobulins and auto-antibodies together with pro-inflammatory cytokines and chemokines. Interestingly, patients classified as responders according to STAR displayed significantly higher baseline levels of C-X-C motif chemokine ligand-13 (CXCL13), interleukin (IL)-22, IL-17A, IL-17F, and tumor necrosis factor-α (TNF-α), whereas a longitudinal analysis of serum T cell–related cytokines showed a selective reduction in both STAR and cCRESS responder patients. Conversely, cCRESS response was better associated with biomarkers of SG immunopathology, with cCRESS-responders showing a significant decrease in SG B cell infiltration and reduced expression of transcriptional gene modules related to T cell costimulation, complement activation, and Fcγ-receptor engagement. Finally, cCRESS and STAR response were associated with a significant improvement in SG exocrine function linked to transcriptional evidence of SG epithelial and metabolic restoration. Conclusion: Rituximab modulates both peripheral and SG inflammation, preventing the deterioration of exocrine function with functional and metabolic restoration of the glandular epithelium. Response assessed by newly developed cCRESS and STAR criteria was associated with differential modulation of peripheral and SG biomarkers, emerging as novel tools for patient stratification. (Figure presented.)
Circulating c-Met-Expressing Memory T Cells Define Cardiac Autoimmunity.
BACKGROUND: Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met+) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans. METHODS: In-depth phenotyping of peripheral blood T cells, including c-Met+ T cells, was undertaken in groups of patients with inflammatory and noninflammatory cardiomyopathies, patients with noncardiac autoimmunity, and healthy controls. Validation studies were carried out using human cardiac tissue and in an experimental model of cardiac inflammation. RESULTS: We show that c-Met+ T cells are selectively increased in the circulation and in the myocardium of patients with inflammatory cardiomyopathies. The phenotype and function of c-Met+ T cells are distinct from those of c-Met-negative (c-Met-) T cells, including preferential proliferation to cardiac myosin and coproduction of multiple cytokines (interleukin-4, interleukin-17, and interleukin-22). Furthermore, circulating c-Met+ T cell subpopulations in different heart muscle diseases identify distinct and overlapping mechanisms of heart inflammation. In experimental autoimmune myocarditis, elevations in autoantigen-specific c-Met+ T cells in peripheral blood mark the loss of immune tolerance to the heart. Disease development can be halted by pharmacologic c-Met inhibition, indicating a causative role for c-Met+ T cells. CONCLUSIONS: Our study demonstrates that the detection of circulating c-Met+ T cells may have use in the diagnosis and monitoring of adaptive cardiac inflammation and definition of new targets for therapeutic intervention when cardiac autoimmunity causes or contributes to progressive cardiac injury
Serum and Tissue Biomarkers Associated With Composite of Relevant Endpoints for Sjögren Syndrome (CRESS) and Sjögren Tool for Assessing Response (STAR) to B Cell–Targeted Therapy in the Trial of Anti–B Cell Therapy in Patients With Primary Sjögren Syndrome (TRACTISS)
Objective
This study aimed to identify peripheral and salivary gland (SG) biomarkers of response/resistance to B cell depletion based on the novel concise Composite of Relevant Endpoints for Sjögren Syndrome (cCRESS) and candidate Sjögren Tool for Assessing Response (STAR) composite endpoints.
Methods
Longitudinal analysis of peripheral blood and SG biopsies was performed pre- and post-treatment from the Trial of Anti–B Cell Therapy in Patients With Primary Sjögren Syndrome (TRACTISS) combining flow cytometry immunophenotyping, serum cytokines, and SG bulk RNA sequencing.
Results
Rituximab treatment prevented the worsening of SG inflammation observed in the placebo arm, by inhibiting the accumulation of class-switched memory B cells within the SG. Furthermore, rituximab significantly down-regulated genes involved in immune-cell recruitment, lymphoid organization alongside antigen presentation, and T cell co-stimulatory pathways. In the peripheral compartment, rituximab down-regulated immunoglobulins and auto-antibodies together with pro-inflammatory cytokines and chemokines. Interestingly, patients classified as responders according to STAR displayed significantly higher baseline levels of C-X-C motif chemokine ligand-13 (CXCL13), interleukin (IL)-22, IL-17A, IL-17F, and tumor necrosis factor-α (TNF-α), whereas a longitudinal analysis of serum T cell–related cytokines showed a selective reduction in both STAR and cCRESS responder patients. Conversely, cCRESS response was better associated with biomarkers of SG immunopathology, with cCRESS-responders showing a significant decrease in SG B cell infiltration and reduced expression of transcriptional gene modules related to T cell costimulation, complement activation, and Fcγ-receptor engagement. Finally, cCRESS and STAR response were associated with a significant improvement in SG exocrine function linked to transcriptional evidence of SG epithelial and metabolic restoration.
Conclusion
Rituximab modulates both peripheral and SG inflammation, preventing the deterioration of exocrine function with functional and metabolic restoration of the glandular epithelium. Response assessed by newly developed cCRESS and STAR criteria was associated with differential modulation of peripheral and SG biomarkers, emerging as novel tools for patient stratification
Epithelial-immune cell interplay in primary Sjogren syndrome salivary gland pathogenesis
In primary Sjogren syndrome (pSS), the function of the salivary glands is often considerably reduced. Multiple innate immune pathways are likely dysregulated in the salivary gland epithelium in pSS, including the nuclear factor-kappa B pathway, the inflammasome and interferon signalling. The ductal cells of the salivary gland in pSS are characteristically surrounded by a CD4(+) T cell-rich and B cell-rich infiltrate, implying a degree of communication between epithelial cells and immune cells. B cell infiltrates within the ducts can initiate the development of lymphoepithelial lesions, including basal ductal cell hyperplasia. Vice versa, the epithelium provides chronic activation signals to the glandular B cell fraction. This continuous stimulation might ultimately drive the development of mucosa-associated lymphoid tissue lymphoma. This Review discusses changes in the cells of the salivary gland epithelium in pSS (including acinar, ductal and progenitor cells), and the proposed interplay of these cells with environmental stimuli and the immune system. Current therapeutic options are insufficient to address both lymphocytic infiltration and salivary gland dysfunction. Successful rescue of salivary gland function in pSS will probably demand a multimodal therapeutic approach and an appreciation of the complicity of the salivary gland epithelium in the development of pSS. Salivary gland dysfunction is an important characteristic of primary Sjogren syndrome (pSS). In this Review, the authors discuss various epithelial abnormalities in pSS and the mechanisms by which epithelial cell-immune cell interactions contribute to disease development and progression
Tailoring the treatment of inflammatory rheumatic diseases by a better stratification and characterization of the clinical patient heterogeneity. Findings from a systematic literature review and experts' consensus
Inflammatory rheumatic diseases are different pathologic conditions associated with a deregulated immune response, codified along a spectrum of disorders, with autoinflammatory and autoimmune diseases as two-end phenotypes of this continuum. Despite pathogenic differences, inflammatory rheumatic diseases are commonly managed with a limited number of immunosuppressive drugs, sometimes with partial evidence or transferring physicians' knowledge in different patients. In addition, several randomized clinical trials, enrolling these patients, did not meet the primary pre-established outcomes and these findings could be linked to the underlying molecular diversities along the spectrum of inflammatory rheumatic disorders. In fact, the resulting patient heterogeneity may be driven by differences in underlying molecular pathology also resulting in variable responses to immunosuppressive drugs. Thus, the identification of different clinical subsets may possibly overcome the major obstacles that limit the development more effective therapeutic strategies for these patients with inflammatory rheumatic diseases. This clinical heterogeneity could require a diverse therapeutic management to improve patient outcomes and increase the frequency of clinical remission. Therefore, the importance of better patient stratification and characterization is increasingly pointed out according to the precision medicine principles, also suggesting a new approach for disease treatment. In fact, based on a better proposed patient profiling, clinicians could more appropriately balance the therapeutic management. On these bases, we synthetized and discussed the available literature about the patient profiling in regard to therapy in the context of inflammatory rheumatic diseases, mainly focusing on randomized clinical trials. We provided an overview of the importance of a better stratification and characterization of the clinical heterogeneity of patients with inflammatory rheumatic diseases identifying this point as crucial in improving the management of these patients
- …