77 research outputs found

    Phosphorylation of unique domains of Src family of kinases

    Get PDF
    Members of the Src family of kinases (SFKs) are non-receptor tyrosine kinases involved in numerous signal transduction pathways. The catalytic, SH3 and SH2 domains are attached to the membrane-anchoring SH4 domain through the intrinsically disordered"Unique" domains, which exhibit strong sequence divergence among SFK members. In the last decade, structural and biochemical studies have begun to uncover the crucial role of the Unique domain in the regulation of SFK activity. This mini-review discusses what is known about the phosphorylation events taking place on the SFK Unique domains, and their biological relevance. The modulation by phosphorylation of biologically relevant inter- and intra- molecular interactions of Src, as well as the existence of complex phosphorylation/dephosphorylation patterns observed for the Unique domain of Src, reinforces the important functional role of the Unique domain in the regulation mechanisms of the Src kinases and, in a wider context, of intrinsically disordered regions in cellular processes

    Structuring chemical space: similarity-based characterization of the PubChem Database

    Get PDF
    The ensemble of conceivable molecules is referred to as the Chemical Space. In this article we describe a hierarchical version of the Affinity Propagation (AP) clustering algorithm and apply it to analyze the LINGO‐based similarity matrix of a 500 000‐molecule subset of the PubChem database, which contains more than 19 million compounds. The combination of two highly efficient methods, namely the AP clustering algorithm and LINGO‐based molecular similarity calculations, allows the unbiased analysis of large databases. Hierarchical clustering generates a numerical diagonalization of the similarity matrix. The target‐independent, intrinsic structure of the database , derived without any previous information on the physical or biological properties of the compounds, maps together molecules experimentally shown to bind the same biological target or to have similar physical propertie

    On the origin of the selectivity of plasmidic H-NS towards horizontally acquired DNA: Linking H-NS oligomerization and cooperative DNA binding

    Get PDF
    The nucleoid-associated protein H-NS is a global modulator of the expression of genes associated with adaptation to environmental changes. A variant of H-NS expressed in the R27 plasmid was previously shown to selectively modulate the expression of horizontally acquired genes, with minimal effects on core genes that are repressed by the chromosomal form of H-NS. Both H-NS proteins are formed by an oligomerization domain and a DNA-binding domain, which are connected by a linker that is highly flexible in the absence of DNA. We studied DNA binding by means of oligomer-forming chimeric proteins in which domains of the chromosomal and plasmidic variants are exchanged, as well as in monomeric truncated forms containing the DNA-binding domain and variable portions of the linker. Point mutations in the linker were also examined in full-length and truncated H-NS constructs. These experiments show that the linker region contributes to DNA binding affinity and that it is a main component of the distinct DNA binding properties of chromosomal and plasmidic H-NS. We propose that interactions between the linker and DNA limit the flexibility of the connection between H- NS oligomerization and DNA binding and provide an allosteric indirect readout mechanism to detect long- range distortions of DNA, thus enabling discrimination between core and horizontally acquired DNA

    Correlation of the EPR properties of perchlorotriphenylmethyl radical and their efficiency as DNP polarizers

    Get PDF
    Water soluble perchlorinated trityl (PTM) radicals were found to be effective 95 GHz DNP (dynamic nuclear polarization) polarizers in ex situ (dissolution) 13C DNP (Gabellieri et al., Angew Chem., Int. Ed. 2010, 49, 3360). The degree of the nuclear polarization obtained was reported to be dependent on the position of the chlorine substituents on the trityl skeleton. In addition, on the basis of the DNP frequency sweeps it was suggested that the 13C NMR signal enhancement is mediated by the Cl nuclei. To understand the DNP mechanism of the PTM radicals we have explored the 95 GHz EPR characteristics of these radicals that are relevant to their performance as DNP polarizers. The EPR spectra of the radicals revealed axially symmetric g-tensors. A comparison of the spectra with the 13C DNP frequency sweeps showed that although the solid effect mechanism is operational the DNP frequency sweeps reveal some extra width suggesting that contributions from EPR forbidden transitions involving 35,37Cl nuclear flips are likely. This was substantiated experimentally by ELDOR (electron-electron double resonance) detected NMR measurements, which map the EPR forbidden transitions, and ELDOR experiments that follow the depolarization of the electron spin upon irradiation of the forbidden EPR transitions. DFT (density functional theory) calculations helped to assign the observed transitions and provided the relevant spin Hamiltonian parameters. These results show that the 35,37Cl hyperfine and nuclear quadrupolar interactions cause a considerable nuclear state mixing at 95 GHz thus facilitating the polarization of the Cl nuclei upon microwave irradiation. Overlap of Cl nuclear frequencies and the 13C Larmor frequency further facilitates the polarization of the 13C nuclei by spin diffusion. Calculation of the 13C DNP frequency sweep based on the Cl nuclear polarization showed that it does lead to an increase in the width of the spectra, improving the agreement with the experimental sweeps, thus supporting the existence of a new heteronuclear assisted DNP mechanism

    Single molecule fluorescence reveals dimerization of myristoylated Src N-terminal region on supported lipid bilayers

    Get PDF
    The proto-oncogene tyrosine-protein kinase Src is a key ele- ment of signaling cascades involved in the invasive and meta- stasis-forming capacity of cancer cells. While membrane ty- rosine-kinase receptors are known to dimerize, Src is classified as a non-receptor kinase and assumed to remain always mono- meric. Here we demonstrate the formation of stable dimers by the first domains of myristoylated Src previously shown to be sufficient for Src trafficking. Src dimers fused to green fluo- rescent protein (GFP) on supported lipid bilayers were identi- fied using single-molecule photobleaching experiments. Com- petition with a protein containing only native Src domains without GFP confirms that dimerization is a previously over- looked intrinsic property of Src. Dimerization is concomitant to membrane binding by the myristoylated forms of Src and may constitute a new regulation layer for the Src oncogene

    Polychlorinated trityl radicals for dynamic nuclear polarization: the role of chlorine nuclei

    Get PDF
    Polychlorinated trityl radicals bearing carboxylate substituents are water soluble persistent radicals that can be used for dynamic nuclear polarization. In contrast to other trityl radicals, the polarization mechanism differs from the classical solid effect. DFT calculations performed to rationalize this behaviour support the hypothesis that polarization is transferred from the unpaired electron to chlorine nuclei and from these to carbon by spin diffusion. The marked differences observed between neutral and anionic forms of the radical will be discussed

    Novel PTM-TEMPO biracial for fast dissolution dynamic nuclear polarization

    Get PDF
    The synthesis and characterization of a novel trityl-TEMPO biradical and the investigation of its properties as Dynamic Nuclear Polarization (DNP) polarizing agent are reported. Comparison with a structurally related monoradical (PTM-TEMPE) or mixtures of the two monoradical components reveals that the biradical has a much higher polarization efficiency and a faster polarization buildup. This offers the possibility of faster recycling further contributing to its efficiency as a polarizing agent

    The two isoforms of Lyn display different intramolecular fuzzy complexes with the SH3 domain

    Get PDF
    The function of the intrinsically disordered Unique domain of the Src family of tyrosine kinases (SFK), where the largest differences between family members are concentrated, remains poorly understood. Recent studies in c-Src have demonstrated that the Unique region forms transient interactions, described as an intramolecular fuzzy complex, with the SH3 domain and suggested that similar complexes could be formed by other SFKs. Src and Lyn are members of a distinct subfamily of SFKs. Lyn is a key player in the immunologic response and exists in two isoforms originating from alternative splicing in the Unique domain. We have used NMR to compare the intramolecular interactions in the two isoforms and found that the alternatively spliced segment interacts specifically with the so-called RT-loop in the SH3 domain and that this interaction is abolished when a polyproline ligand binds to the SH3 domain. These results support the generality of the fuzzy complex formation in distinct subfamilies of SFKs and its physiological role, as the naturally occurring alternative splicing modulates the interactions in this complex

    A C2HC zinc finger is essential for the RING-E2 interaction of the ubiquitin ligase RNF125

    Get PDF
    The activity of RING ubiquitin ligases (E3s) depends on an interaction between the RING domain and ubiquitin conjugating enzymes (E2), but posttranslational events or additional structural elements, yet largely undefined, are frequently required to enhance or regulate activity. Here, we show for the ubiquitin ligase RNF125 that, in addition to the RING domain, a C2HC Zn finger (ZnF) is crucial for activity, and a short linker sequence (Li2(120-128)) enhances activity. The contribution of these regions was first shown with truncated proteins, and the essential role of the ZnF was confirmed with mutations at the Zn chelating Cys residues. Using NMR, we established that the C2HC ZnF/Li2(120-128) region is crucial for binding of the RING domain to the E2 UbcH5a. The partial X-ray structure of RNF125 revealed the presence of extensive intramolecular interactions between the RING and C2HC ZnF. A mutation at one of the contact residues in the C2HC ZnF, a highly conserved M112, resulted in the loss of ubiquitin ligase activity. Thus, we identified the structural basis for an essential role of the C2HC ZnF and conclude that this domain stabilizes the RING domain, and is therefore required for binding of RNF125 to an E2
    corecore