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Abstract: The ensemble of conceivable molecules is referred 
to as the Chemical Space. In this article we describe a 
hierarchical version of the Affinity Propagation (AP) clustering 
algorithm and apply it to analyze the LINGO-based similarity 
matrix of a 500,000-molecule subset of the PubChem 
database, which contains more than 19 million compounds.  
The combination of two highly efficient methods, namely the 
AP clustering algorithm and LINGO-based molecular  

similarity calculations, allows the unbiased analysis of large 
databases. Hierarchical clustering generates a numerical 
diagonalization of the similarity matrix. The target-
independent, intrinsic structure of the database , derived 
without any previous information on the physical or biological 
properties of the compounds, maps together molecules 
experimentally shown to bind the same biological target or to 
have similar physical properties  
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1 Introduction 

The number of compounds recorded in chemical databases 
is growing rapidly. The NIH-sponsored public repository of 
molecular information, the PubChem database 
(http://pubchem.ncbi.nlm.nih.gov), exceeded 19 million 
compound records in September 2008, only 4 years after its 
implementation. This vast amount of information generates 
new opportunities for exploiting structure activity 
relationships in pharmaceutical research. In this scenario, 
the notion of chemical space and its characterization has 
become a central issue. 

 
Underlying the practical applications of the chemical 

space concept is the Similar Property Principle, for which 
molecules that are structurally similar are likely to have 
similar physicochemical properties, [1,2] as well as similar 
interactions with targets (Active Analog Principle). [3-7] 
Chemical similarity-based clustering methods attempt to 
organize the chemical space by grouping molecules with 
similar properties. Complete reviews of clustering methods 
applied to chemical problems are available. [8] Clustering 
methods can be classified as hierarchical or non-hierarchical. 
The former generate classifications that are typically 
represented as dendrograms. In contrast, the latter generate 
a partition of elements.  However, iterative clustering of 
exemplars, the representatives of each cluster, can be used 
to convert the method from non-hierarchical to hierarchical.  

Very recently, Frey and Dueck introduced a new 
affinity propagation (AP) clustering algorithm. [9] This 
extremely efficient algorithm takes pairwise distances 
between data points as input in order to select those that 
form the centre of clusters. Thus the sum of the squared 
distances between data points in the cluster and their 

centres are minimal. In contrast to other clustering 
techniques, all points are initially considered potential 
exemplars and real-valued messages are recursively 
passed between points to indicate the “responsibility” of 
each data point to choose another data point as its 
exemplar and the “availability” of each data point to 
become an exemplar, on the basis of the accumulated 
“support” gathered from other points. Messages are 
updated at each iteration using simple formulas that 
search for the minima of an appropriate energy function. 
The computational cost increases linearly with the 
number of similarity values used. Thus this approach is 
well suited for the clustering of very large datasets with a 
relatively small number of significant similarities between 
data pairs. AP clustering can be applied to data in 
discontinuous non-metric space. This is the case of 
chemical space and pairwise distances derived from 
Molecular Similarities. A large number of molecular 
similarity measures have been described. [3, 4, 10-13] Most 
approaches use graph-based methods to identify 
molecules and to compute their similarities. We recently 
introduced LINGO pure text- based methods to compute 
molecular similarities and molecular properties. [14, 15] 
LINGO methods compare similarities directly from 
standardized SMILES or IUPAC names. [16] In contrast to 
fingerprint-based methods, direct comparison of SMILES 
or IUPAC names obviates the expansion of the 
associated molecular structures. In spite of their 
simplicity, LINGO methods have been shown to give 
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comparable results to widely used structure-derived 
fingerprint methods to retrieve active compounds for a 
variety of activity classes from a random set. [17] 

Here we used AP clustering, together with LINGO-
based similarity calculations, to analyze the structure of 
PubChem.  Using a subset of 500,000 molecules, we 
derived a stable hierarchical clustering structure. We 
show that molecules with similar physical properties or 
that are experimentally known to bind to the same target 
are  clustered together.  

The use of molecular basis sets to represent 
chemical space was previous proposed by Oprea and 
Gottfries in their ChemGPS method. . [18] In that 
procedure, external “satellite” molecular vectors with 
components defined by a number of molecular 
descriptors provide the positions of molecules in the 
drug-like chemical space Also, the SIBAR method uses 
the similarity of molecules to a set of reference 
compounds to estimate molecular properties. [19] The 
chemical space has analogies with a high dimension 
vectorial space. Recently, Raghavendra and Maggiora 
used a generalized Fourier analysis to describe chemical 
space using basis sets of orthogonal abstract molecular 
vectors associated with chemical species.[20] 
Hierarchical clustering provides a method for the 
diagonalization of the similarity matrix and identifies sets 
of “eigenmolecules” that are mutually dissimilar 
(“orthogonal”) and related to most of the molecules in 
the database. 

 

 

2 Methods 

PubChem database processing 

The PubChem database was downloaded on 03/05/2008 
from the PubChem server. All entries were converted into 
canonical SMILES using JChem software. [21] The database 
was filtered to remove the following: compounds containing 
elements other than C, N, S, O, H, P and halides; double 
entries; SMILES shorter than 4 characters; and molecules 
with more than 9 rings or with a molecular weight > 600D. 
The processed database contained 16,021,418 entries. 
Hierarchical clustering was applied to a random subset of 
500,000 molecules. 
 
Similarity calculations 
 
LINGOsim [14] pairwise molecular similarity was calculated 
from standardized SMILES-derived 4-character LINGO 
profiles using equation (1) 
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where NA,i is the number of LINGOs of type i in molecule A, 
NB,i is the number of LINGOs of type i in B, and l is the 
number of LINGOs contained in either molecule A or B.  

Affinity propagation algorithm clustering. 

AP clustering takes a list of similarities s(i,j)  and preferences 
s(k,k) as input. The preference input value indicates the a 
priori likelihood that molecule k becomes an exemplar. This 
value controls the average number of clusters formed. The 
use of the estimated median value of similarities in the 
database (0.0533), as recommended in the original 
publication, leads to a number of exemplars of around one 
tenth of the points to be clustered. The Matlab 
implementation of the AP clustering algorithm was 
downloaded from 
http://www.psi.toronto.edu/affinitypropagation/ (accessed on 
03/06/08). This implementation uses negative distances as 
input, where distance is set to 1- S(i,j). Briefly, AP clustering 
is based on the recursive updating of two types of real-
valued messages: the responsibility of point i towards 
candidate exemplar k, r(i,k) and the availability of candidate k 
to be the exemplar of i, a(i,k). Availabilities are initialized to 
zero. Updates are carried out using the following rules.  

 
(2) 
 
(3) 
 
(4) 
 

 
The AP clustering algorithm pseudocode is shown in 
Scheme 1. 
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Scheme 1. Pseudocode for AP-clustering 

Iterative clustering. 

AP clustering was carried out starting from a random ordered 
database by clustering non-overlapping sequential sets of 
3,000 molecules. The size of the subsets was arbitrary and 
was chosen for computating time reasons. The resulting 
exemplars, which we call “parents”, were submitted to a new 
clustering procedure in groups of 3,000. This approach 
produced a new, smaller set of exemplars, which we refer to 
as “grandparents”. The procedure was repeated to generate 
fewer than 3,000 “great grandparents”, which were clustered 
to generate the highest level exemplars, which we call 
“ancestors”. The composition of the starting subsets and the 
clusters derived depends on the original ordering of the 
database. However, this procedure generates a hierarchy for 
each molecule in the database, which is used to reorder the 
original dataset so that molecules sharing common 
exemplars at distinct clustering levels are placed together, 
with priority given to sharing exemplars that belong to the 
lower levels of the clustering hierarchy. The procedure is 
illustrated by an example in the supplementary information. 
Clustering is refined at each iteration both globally (by 
bringing together molecules that were located in distant 
positions in previous database orderings and therefore not 
included in the same subset) but also locally (as the 
molecules that are compared within the same subset 
become more similar, clustering generates a finer 
discrimination between similar compound classes).  The 

complete procedure (generation and clustering of non-
overlapping sets of 3,000 molecules to produce a new set of 
“parents” and, subsequently, “grandparents”, “great-
grandparents” and “ancestors”) was repeated until a stable 
clustering of the complete dataset was achieved.  
Convergence was monitored through the average similarity 
of sets of adjacent molecules in the ordered database and by 
comparing the cluster composition in different iterations 
using ClustSim. The average time for a process iteration is 
about 12 hours in a single PC running with a Intel Core 2 
quad processor on a GNU/Linux platform. 
 
 

ClustSim values are defined as follows: for a molecule α 
 that belongs to cluster A in one round and to cluster B in a 
second run:  
 

cba
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α
   (0 ≤ ClustSim < 1)      (5) 

 
where: a is the number of molecules in cluster A; b is the 
number of molecules in cluster B; and c is the number of 
molecules present in both cluster A and cluster B. This 
coefficient is zero when α is the only molecule shared by 
clusters A and B and it increases with the number of 
common molecules in both clusters. The maximum value of 
ClustSim is (k-1)/k for identical clusters of size k. For large 
clusters, this value approaches one, although for small 
clusters the contribution is lower. For singletons the 
contribution becomes zero. The similarity between 
clusterings of the same set of molecules is the sum of 
ClustSim for all molecules in the set. The maximum value 
was estimated by computing the similarity between two 
identical cluster sets with the same distribution of cluster 
sizes.  

Incompleteness error.  

Following Raghavendra and Maggiora, [20] a limited set of 
molecules can be used as a basis set to describe a much 
larger database. The error associated with the 
incompleteness of a basis set of p molecules can be 
quantified by the sum of the components of molecules in a 
test set that are not described by this basis set using 
equation (6). 

       ε2 (p) = 1 – Tr(STS-1S)    (6) 
 

Where S is the p x n dimensional matrix formed by the 
similarities between the p molecules forming the chosen 
basis set and the n molecules of a test set. S is the p x p 
similarity matrix containing the similarities between the 
members of the basis set. The error decreases with the size 
of the basis set but it also depends on the composition of the 
set and, in particular, on its capacity to capture the diversity 
of the complete database. The larger the diversity captured 
by a basis set of a given size, the lower the incompleteness 
error. 

Biological activity classes.  

To test whether the LINGOsim-AP-derived clusters mapped 
together compounds with known activity for the same targets, 
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we used 2,950 ligands for 40 distinct targets taken from the 
Directory of Useful Decoys (DUD). [22] For each ligand, the 
DUD database contains in addition 36 physically similar, but 
inactive decoy molecules. Thus the DUD database is a very 
strict benchmark for virtual screening. The total number of 
molecules is 98,266. Details of the database are given as 
supplementary material. AP clustering was performed on the 
DUD database and on a database generated by adding the 
2,950 DUD ligands to the original 500,000-molecule 
database.  

The distribution of the ligands for each target in the 
different clusters was compared with the distribution of an 
equivalent number of decoys of the same target or random 
molecules selected from the complete databases. In order to 
compare the results of different targets, which differ in the 
number of ligands, a cluster specificity index (CSI) was 
defined as  

i
C

i

N
N

iCSI max)( =                              (7) 

where i
CN  is the number of clusters that contain at least one 

ligand of target i and iN
max

 is the maximum number of 

clusters that can be occupied, which is the number of ligands 
for this class. Thus, the CSI value is numerically identical to 
the average number of ligands in the active clusters.  

3 Results 

Iterative hierarchical AP clustering. 

For a given database, the similarity matrix contains all the 
pairwise similarities between the elements. The intrinsic 
structure of the database, as captured by a given 
combination of molecular descriptor(s) and similarity metric, 
is contained in the similarity matrix and it can be used to 
organize the database in two ways:  

i) Elements can be grouped in clusters showing similarity 
within the cluster that is significantly higher than with 
members of other clusters. 

ii) Individual elements of the database can be ordered in 
a list with the property that pairs of elements that are closer 
in the list are more similar than more distant pairs. The 
associated similarity matrix would have maximum values 
close to the diagonal.  

Clustering techniques are either hierarchical or non-
hierarchical. Hierarchical methods provide dendrograms 
(tree diagrams) that allow the definition of clusters at different 
levels of similarity. Elements high in the hierarchy will 
connect a large number of elements with low similarity. 
Lower hierarchy elements nucleate smaller clusters with 
higher similarity.  

The original AP algorithm is non-hierarchical. Compared 
to other clustering algorithms, it has the advantage that it is 
extensively data-driven and does not require the predefinition 

of either the number of clusters or the cluster centers. In 
addition, this algorithm is robust and efficient and can be 
used with large datasets and discontinuous non-metric 
spaces. Each AP round generates a set of exemplars that 
are the centers of the clusters into which the complete 
database has been divided. AP clustering can be used 
iteratively to cluster exemplars, thereby resulting in 
hierarchical clusters. Here we performed four-level clustering 
(parents, grandparents, great grandparents and ancestors) 
to link the initial 500,000 molecules to ca. 100 ancestors, the 
top level exemplars. Figure 1 shows a representative set of 
structures from a low level cluster and their higher order 
representatives.  

Figure 1. Representative example of a LINGOsim-based AP cluster 
and its associated higher level exemplars. 

AP clustering cannot be applied directly to the complete 
set of 500,000 elements.  The list of molecules in the 
database (in an initially arbitrary order) was divided into 
smaller subsets of adjacent molecules, which were 
hierarchically clustered. At the higher levels of the hierarchy, 
the exemplars from distinct subsets can be combined and 
clustered.  As a result, elements from different subsets may 
have common ancestors. This initial hierarchical clustering 
allows the reordering of the molecules in the database, such 
that molecules with common ancestors are grouped. The 
complete procedure (division in small subsets of adjacent 
molecules, hierarchical clustering, and reordering of the 
database) is repeated until a stable clustering arrangement is 
obtained. 

Clustering convergence and cluster structure  

Each cycle can generate a potentially distinct set of 
clusters. The similarity between the composition of the 
clusters is given by the integral of ClustSim (see methods 
section), which compares the elements that are present in 
the clusters to which a given molecule belongs in two 
different clustering arrangements and adds the results for all 
the molecules in the database. Figure 2 shows the evolution 
of the similarity between clusters until convergence is 
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reached after about 25 cycles. The similarity value at 
convergence is 94.8% of the value obtained by comparing 
identical clusters. This value corresponds to about 2.5% of 
all molecules being in a different cluster to that of the 
previous cycle. 

Figure 2. Convergence of cluster composition in successive 
hierarchical AP-clustering of a random set of 500,000 molecules 
from PubChem. 

Convergence can also be estimated by comparing the 
average similarity within non-overlapping consecutive sets of 
3,000 molecules in the ordered database (level 1) and sets 
of 3,000 exemplars of the higher levels (Figure 3). The 
average similarity of sets measured at the higher levels 
tends to decrease with respect to a random set of similar 
size. The average pairwise similarity between the final 101 
ancestors of the database was only 0.02. This value was 
expected as the clustering procedure tends to select the 
most dissimilar molecules at the highest clustering level. 
Iterative hierarchical coupling provides a numerical approach 
to the diagonalization of the similarity matrix. Figure 4 shows 
the average similarity between molecules as a function of the 
distance of their positions in the ordered database after the 
process has converged. 

Bioisoster molecules are related by the exchange of 
broadly similar atoms or groups, thereby leading to similar 
biological properties in a given context. The BIOSTER 
database provides a list of pairs of bioisoster molecules 
extracted from the literature in a range of contexts, including 
drugs, agrochemicals, enzyme-inhibitors and pro-drugs. 
Previous results showed that LINGO-derived similarities can 
statistically identify biosioster pairs: 95% of non-bioisoster 
molecules have LINGOsim values lower than 0.17. Thus 
higher similarity values suggest similar properties. [14] Using 
this threshold, bioisoster molecules are expected to be 
located in positions ±60 from a given compound in the 
ordered set.  

The LINGOsim average inside clusters of different levels 
is shown in Figure 5. The arrows indicate the 0.17 similarity 
threshold of bioisoster molecules. Clusters generated by AP 
and LINGOsim group molecules with average pairwise 
similarities well above the bioisoster threshold. The average 
similarities at the second and third levels are still significant, 

thereby suggesting that physical properties and activity data 
from molecules sharing a “great grandparent” are statistically 
correlated.  

Cluster stability. 

To check the stability of the clustering algorithm with respect 
to the initial random ordering of the database, we performed 
a second complete clustering process, starting from a 
different random order of molecules. We then compared the 
similarity of the low level exemplars (parents) obtained in 
both cases. The results are shown in Figure 6a. 

 

Figure 4. Average pairwise LINGOsim values of as a 
function of their relative position in the converged ordered set. 
The 0.17 threshold for bioisoster molecules is indicated. 

 

Figure 3. Average similarity within non-overlapping sets of 
adjacent molecules at different iterations during AP-clustering. 
The sets contained 3,000 molecules, except for the higher 
clustering levels where the total number of exemplars was used. 
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161,662 molecules (corresponding to 32.3% of the whole 
database) had exactly the same parent assigned in both 
clustering experiments. For the remaining 67.7% of 
molecules, the parents assigned in the two clustering 

experiments had varying degrees of similarities. 

Figure 6b compares the distribution of similarities of 
338,338 pairs of parents assigned to the same molecule in 
different clustering experiments with that of 7,161 bioisoster 
pairs from the BIOSTER database and the same number of 
random pairs of molecules. The similarity distribution of pairs 
of parents resembles that found in the BIOSTER database 
and clearly differs from the distribution expected for random 
pairs. These results show that the clusters generated by the 
method described here, starting from different database 
orders, are equivalent from the point of view of their 
structural and biological relevance. 

However, the exact composition of the clusters is only 
partially maintained. The ClustSim coefficient between the 
two cluster sets is 19.9% of the expected value for identical 
clusterings. This value corresponds to the exchange of ca. 
47% of the molecules between clusters. Equally acceptable 
(degenerate) clustering arrangements are possible. The 
similarity distributions show that degenerate clustering 
arrangements select exemplars that have similarities typical 
of bioisosters. This observation thus suggests that 
degenerate clusters have similar chemical and biological 
relevance.  

Clustering stability is a crucial issue defined as the 
capacity of the algorithm to consistently generate the same 
clustering from the same dataset. Here we show that AP-
LINGOsim clustering generates  a stable clustering, from the 
point of view of bioisosterism. Thus, the resulting clustering 

captures functionally relevant aspects of the intrinsic 
structure of the database.  

Eigenmolecules of the PubChem chemical space 

After iterative AP clustering, each ancestor is 
hierarchically connected to a certain number of molecules in 
the database, which we call its branching number. Figure 7a 
shows the accumulated number of molecules associated 
with different ancestors ordered by their branching number. 
47.2 % of the molecules in the database are associated with 
only 10 ancestors. In contrast, 52 of the 101 less branched 
ancestors (54.4%) collectively account for only 0.03% of the 
database. 

Figure 7b shows the branching number of the ancestors, 
highlighting a clear distinction between the first more highly 

Figure 5. Intracluster average pairwise similarity. The number of 
clusters with an average pairwise similarity between S and S-
0.05 is represented as a function of the similarity value S. Only 
clusters containing more than one element are considered. The 
members of a level i (i > 1) cluster are level i-1 exemplars. The 
arrows indicate the 0.17 threshold for bioisosters.  

Figure 6. A) Comparison of the similarities of parents 
obtained from two independent iterative AP clustering runs 
starting from two random orderings of the same dataset. B) 
Distribution of LINGOsim values between parents assigned to 
the same molecule in two independent iterative AP clustering 
runs. The similarity between parents assigned to the same 
molecule in two runs is higher than the similarity distribution of 
bioisoster pairs in the BIOSTER database 
(http://accelrys.com/products/accord/chemical-
databases/bioster.html). The similarity distribution of random 
pairs of molecules is shown as a comparison. 
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branched ancestors and the rest. The 49 ancestors with the 
highest branching. can be considered “eigenmolecules” of 
the database. They constitute a small set of highly dissimilar 
(“orthogonal”) molecules that can be linked by similarity to 
most of the database. Given the degeneracy of clustering 
arrangements discussed above, the molecules forming an 
eigenmolecule set may change depending on the clustering 
experiments. The structures of eigenmolecules obtained in a 
representative iterative AP-clustering experiment are 
provided as supplementary information. 

The average cluster size generated by the AP clustering 
algorithm with the setting used is around 10 and therefore, 
four levels of clustering generate around 50 ancestors from 
500,000 molecules, which is close to the value found. In 
contrast, scarcely branched ancestors and singletons 
correspond to rare structures. Their number is expected to 
be proportional to the size of the database and remains 
constant at each clustering level. We propose that four-level 
clustering is a suitable level to generate sets of ancestor s of 
the PubChem database formed by an approximately similar 
number of highly branched and unique structures. 

Figure 7 Ancestor branching. Ancestors (top level exemplars) 
are ordered according to their branching number. a)  Accumulated  
number of database molecules hierarchically connected to different 
ancestors. b) Branching number of individual ancestors. 

The set of molecules that are connected to 
eigenmolecules represent a filtered database, in which rare 
structures have been removed. A set of PubChem entries 
identified as low branching ancestors is given as 
supplementary material. These infrequent structures include 
hypothetical structures or representation errors. Iterative AP 
clustering of a filtered database in which the low branching 
ancestors and their related molecules had been removed 
gives 54 eigenmolecules with branching larger than 103  (see 
supplementary material).  

Raghavendra and Maggiora [20] proposed the use of 
small basis sets of molecules and a generalized Fourier 
analysis method to represent larger databases. Molecules 
are assimilated to vectors in an abstract multidimensional 
space. Although the explicit coordinates of a molecular 
vector are not defined, the inner product is assimilated to the 
similarity between the molecules. By using a small number of 
molecules in the basis set, a representation error is 
introduced. This error can be quantified, as described in the 
methods section. If all the molecules of the database were 
included in the basis set, the error would be zero. As the 
number of molecules in the basis set decreases, the error 
increases. Thus a proper selection of the molecules included 
in the basis sets will decrease the error of the representation. 
An optimized set would include the smallest number of 

molecules that capture the structural characteristics of most 
of the database. 

We compared basis sets of different sizes formed by 
including molecules from either: i) the set of 49 
eigenmolecules; ii) a set of randomly chosen molecules; or 
iii) a set of random molecules with the same molecular 
weight distribution as the eigenmolecules. The maximum 
basis set size is restricted to 49 molecules. The 
incompleteness error was computed using a test set of 4,000 
molecules chosen randomly from PubChem (excluding 
molecules in the 500,000 training set from which the 
eigenmolecules were defined).  

 

Figure 8a compares the eigenmolecule set with the two 
different random sets. The error decreases as the basis set 
size increases. While the number of eigenmolecules is 
restricted to 49 in this case, larger basis sets can be 
obtained using level 3 exemplars instead of eigenmolecules. 

Figure 8. Incompleteness error of molecular basis sets 
generated from cluster exemplars or randomly chosen molecules. a) 
Eigenmolecules (the 49 ancestors with larger branching numbers, 
ordered by their branching number). b) Level 3 clustering exemplars 
(great-grandparents). 
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Figure 8b compares basis sets formed by level 3 exemplars 
or by random molecules. Depending on the error level, the 
required number of exemplars is 30-50% smaller than the 
number of random molecules. 

The incompleteness error provides a quantification of the 
capacity of a small dataset to represent a larger database. 
Using this metrics, eigenmolecule sets are shown to be a 
good molecular representation of the PubChem dataset. 

The most important characteristics of eigenmolecules are 
topological: eigenmolecule sets are highly diverse and their 
members are connected to a large proportion of the 
database using a small number of connection steps. 

To evaluate the connectivity of the eigenmolecule set in 
the context of a larger subset of PubChem, 16 million 
molecules from this database were scanned to select those 
with similarity over a threshold value to the 49 
eigenmolecules. The threshold was selected for each 
ancestor so that only the top 5% was retained when all 
molecules linked to a given ancestor in the 500,000-molecule 
set were ranked by their similarity to this ancestor. To 
compute the similarity, only the LINGOs present in the 
ancestors were considered. This approach provides a set of 
2,269,570 molecules, which contains no rare molecules or 
singletons. A similar selection carried out using a random set 
of 49 molecules and a threshold equal to the average value 
used in the ancestor-based selection, selects only 672,541 
molecules. This observation indicates that the eigenmolecule 
set is connected to a larger number of molecules not only in 
the “training set” of 500,000 molecules used to derive it but 
also in the complete PubChem database. 

 Application of iterative AP clustering to a set of 500,000 
molecules selected from the highly connected 2,269,570 set 
gave only 39 highly branched ancestors. This result shows 
that the number of eigenmolecules is related to the diversity 
of the database.  

Clusters group molecules with similar physical 
properties and biological activity. 

Figure 9 shows the correlation between the intra-cluster 
average value of distinct physical properties and the 
corresponding values of the cluster exemplar. Properties 
were calculated from IUPAC names as previously 
described..[16] 

The excellent correlations observed (R2 = 0.90)  
demonstrate that the clustering of the database based on 
LINGO similarities captures relevant target-independent 
physical and pharmacological properties. This finding is 
consistent with previous demonstrations of the capacity of 

LINGO-based methods to provide accurate estimates of 
global properties. [14, 16] 

In order to demonstrate that LINGO-based clustering also 
captures biological properties, such as ligand binding to 
specific targets, we used the DUD database, which contains 
validated ligand sets for 40 targets. [22] The list of targets 
present in the DUD database is given as supplementary 
information. Each ligand is associated with a number of non-
ligands or “decoys” that share some physical properties with 
the ligand. Discrimination between true ligands and decoys 
provides a strict benchmark for virtual screening that 
discriminates genuine topological-structural features of the 
ligand-target interaction from mere physical constraints on 
the ligand properties.  

We performed LINGOsim-driven iterative AP clustering of 
the complete merged DUD database (ligands and decoys for 
all targets). The distribution of ligands of a particular target in 
distinct clusters was compared with the distribution of the 
same number of decoys (randomly selected from the set 
associated with the same target) and the same number of 
molecules randomly chosen from the complete DUD 
database.  

The Cluster Specificity Index (CSI, see methods section) 
provides a measure of the enrichment of ligands in particular 
clusters. When the total number of clusters is very high, 
randomly chosen molecules tend to fall into different clusters, 
giving a CSI close to one. Larger CSI values indicate an 
enrichment in particular clusters. 

Figure 9 Correlation between logP, of exemplars and the 
corresponding intra-cluster averages using a 460.000 molecule 
subset of PubChem. Clustering was based on the SMILES 
representations. logP was calculated from  IUPAC names[16] 

 

 

 



Running title 

 9 

Figure 10. Enrichment factors for ligand sets of distinct DUD 
targets at the first clustering level. The number of clusters occupied 
by equivalent sets of ligands, decoys and random molecules are 
compared. The sets corresponding to different targets are 
normalized. The plots corresponding to clustering levels are shown 
as supplementary information. 

The CSI values for the 40 ligand sets applied to the 
lowest clustering level are shown in Figure 10. Ligands of the 
same target are enriched in a smaller number of clusters 
than equivalent numbers of molecules that do not share a 
common biological activity (random set) even if they have 
similar physical properties (decoy set). The decoy sets show 
CSI values slightly higher than the random sets, thereby 
indicating that physical properties make a small contribution 
to the clustering of ligands from the same target. However, 
the large difference between true active ligands and decoys 
shows that the structural characteristics responsible for the 
specific biological activity of ligand sets have been captured 
by LINGOsim and correctly clustered by the iterative 
clustering algorithm. 

Figure 11 shows the distribution of COX2 and EGFR 
ligands in the DUD database ordered by iterative AP-
clustering. The ligand frequency is the number of active 
ligands per bin divided by the bin size.  The 348 COX2 
ligands appear in three peaks that group 186, 73 and 14 
ligands.  The EGFR ligands are more diverse but the bins 
contributing to the main peak are formed almost exclusively 
by EGFR ligands.  The separation of ligand classes 
according to their LINGO similarities is reminiscent of a 
chromatographic process in which separation based on 
physical properties allows the isolation of molecules with a 
given biological activity and we suggest to call the  LINGO 
based ordering of a database as LINGO-based virtual 
chromatography.  

4 Conclusions 

The usefulness of currently available large databases 
depends on the capacity to structure the represented 
chemical space and navigate through it. LINGO-based 
similarity provides a highly efficient method to generate the 
required large similarity matrices that capture the structure of 
chemical space. We corroborate that LINGO methods 
discriminate between bioisosteric and random pairs and that 
they can also be used to predict similarities between physical 
properties. 

AP clustering provides a robust and very effective 
clustering algorithm well suited to the large databases and 
non-metric distances found in chemical applications. 
Compared to other clustering algorithms, AP clustering is 
intensively data-driven, the predefinition of the number of 
clusters is not required and the cluster centers are chosen to 
be optimal exemplars (stay in the center) of the defined 
clusters, thus allowing iterations to generate a hierarchical 
clustering structure. The computational cost increases 
linearly with the number of similarity values and is therefore 
very well suited for the clustering of very large datasets. The 
algorithm easily converges for datasets as large as 3,000 
molecules but cannot be applied directly to 500,000 
molecules. We have developed an iterative procedure that 
generates a stable hierarchical clustering structure for the 
complete set starting from smaller random subsets. This 
structure is associated with a reordering of the database so 
that similar molecules are placed next to each other. The 
procedure converged after 25 iterations, as shown by the 
average similarity between groups of adjacent molecules and 
by comparing the composition of the clusters. Degenerate 
clustering arrangements can be obtained but it was 
demonstrated that the exemplars are either identical or have 
a similarity distribution equivalent to that found in bioisosters. 
Thus a functionally stable clustering arrangement is obtained. 

After four levels of clustering, the highest level exemplars 
included two sharply divided sets of approximately the same 
size. The first set included what we called “eigenmolecules”, 
which collectively were linked by similarity to more than 99% 
of the database. The second set was formed by singletons or 
rare structures. Sets of exemplars generated by hierarchical 
AP clustering were shown to provide a much better 
representation of the complete dataset than the same 
number of random molecules using the generalized Fourier 
method described by Raghavendra and Maggiora.  

The combination of LINGOsim and the AP algorithm 
generates clusters that include molecules with similar 

Figure 11. Virtual LINGO chromatography showing the 
distribution of COX2  and EGFR ligands in the ordered DUD 
database. The inset shows an expansion of the main EGFR 
peak. Bin size is 60.  
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physical properties. Using the DUD database, we found that 
molecules known to bind to the same biological targets were 
enriched in particular clusters.  

The literature includes a large number of clustering 
methods as well as similarity measures. AP clustering and 
LINGOsim are among the most effective methods and are 
well suited for large datasets. Iterative AP clustering based 
on LINGOsim has the capacity to generate a target-
independent structure of the PubChem database. This new 
approach clusters ligands for the same targets and, therefore, 
could be used to speed up similarity-based virtual screening. 
Work is in progress to compare the performance of the 
proposed AP clustering-LINGOsim method with other widely 
used clustering methods and similarity measures. 
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