32 research outputs found

    Commissioning of the CALIFA Barrel Calorimeter of the R3^{3}B Experiment at FAIR

    Get PDF
    CALIFA is the high efficiency and energy resolution calorimeter for the R3^{3}B experiment at FAIR, intended for detecting high energy charged particles and γ\gamma-rays in inverse kinematics direct reactions. It surrounds the reaction target in a segmented configuration of Barrel and Forward End-Cap pieces. The CALIFA Barrel consists of 1952 detection units made of CsI(Tl) long-shaped scintillator crystals, and it is being commissioned during the Phase0 experiments at FAIR. The first setup for the CALIFA Barrel commissioning is presented here. Results of detector performance with γ\gamma-rays are obtained, and show that the system fulfills the design requirements

    Quasi-free (p,2p) reactions in inverse kinematics for studying the fission yield dependence on temperature

    Get PDF
    Despite the recent experimental and theoretical progress in the investigation of the nuclear fission process, a complete description still represents a challenge in nuclear physics because it is a very complex dynamical process, whose description involves the coupling between intrinsic and collective degrees of freedom, as well as different quantum-mechanical phenomena. To improve on the existing data on nuclear fission,we produce fission reactions of heavy nuclei in inverse kinematics by using quasi-free (p,2p) scattering, which induce fission through particle-hole excitations that can range from few to ten\u27s of MeV. The measurement of the four-momenta of the two outgoing protons allows to reconstruct the excitation energy of the fissioning nucleus and therefore to study the evolution of the fission yields with temperature. The realization of this kind of experiment requires a complex experimental setup, providing full isotopic identification of both fission fragments and an accurate measurement of the momenta of the two outgoing protons. This was realized recently at the GSI/FAIR facility and here some preliminary results are presented

    Comprehensive investigation of fission yields by using spallation- and (p,2p)-induced fission reactions in inverse kinematics

    Full text link
    In the last decades, measurements of spallation, fragmentation and Coulex induced fission reactions in inverse kinematics have provided valuable data to accurately investigate the fission dynamics and nuclear structure at large deformations of a large variety of stable and non-stable heavy nuclei. To go a step further, we propose now to induce fission by the use of quasi-free (p,2p) scattering reactions in inverse kinematics, which allows us to reconstruct the excitation energy of the compound fissioning system by using the four-momenta of the two outgoing protons. Therefore, this new approach might permit to correlate the excitation energy with the charge and mass distributions of the fission fragments and with the fission probabilities, given for the first time direct access to the simultaneous measurement of the fission yield dependence on temperature and fission barrier heights of exotic heavy nuclei, respectively. The first experiment based on this methodology was realized recently at the GSI/FAIR facility and a detailed description of the experimental setup is given here.Comment: 4 pages, 15th International Conference on Nuclear Data for Science and Technology (ND2022

    Charge-state resolved laser acceleration of gold ions to beyond 7 MeV/u

    Get PDF
    In the past years, the interest in the laser-driven acceleration of heavy ions in the mass range of [Formula: see text] has been increasing due to promising application ideas like the fission-fusion nuclear reaction mechanism, aiming at the production of neutron-rich isotopes relevant for the astrophysical r-process nucleosynthesis. In this paper, we report on the laser acceleration of gold ions to beyond 7 MeV/u, exceeding for the first time an important prerequisite for this nuclear reaction scheme. Moreover, the gold ion charge states have been detected with an unprecedented resolution, which enables the separation of individual charge states up to 4 MeV/u. The recorded charge-state distributions show a remarkable dependency on the target foil thickness and differ from simulations, lacking a straight-forward explanation by the established ionization models

    Performance recovery of long CsI(Tl) scintillator crystals with APD-based readout

    No full text
    CALIFA is the high efficiency and energy resolution calorimeter for the R3B experiment at FAIR, intended for detecting high energy light charged particles and gamma rays in scattering experiments, and is being commissioned during the Phase-0 experiments at FAIR, between 2018 and 2020. It surrounds the reaction target in a segmented configuration with 2432 detection units made of long CsI(Tl) finger-shaped scintillator crystals. CALIFA has a 10 year intended operational lifetime as the R3B calorimeter, necessitating measures to be taken to ensure enduring performance. In this paper we present a systematic study of two groups of 6 different detection units of the CALIFA detector after more than four years of operation. The energy resolution and light output yield are evaluated under different conditions. Tests cover the aging of the first detector units assembled and investigates recovery procedures for degraded detection units. A possible reason for the observed degradation is given, pointing to the crystal-APD coupling

    Tl concentration and its variation in a CsI(Tl) crystal for the CALIFA detector

    No full text
    © 2020 Published by Elsevier B.V. One of the factors that can contribute to the resolution of long, doped inorganic scintillators used for nuclear spectroscopy is the variation of the dopant concentration over the length the detector crystal. In this work an investigation of such potential variations in one of the CsI(Tl) scintillators used in the calorimeter, CALIFA, of the R3B experiment at FAIR, has been performed using particle induced X-ray emission. No statistically significant gradient in doping level was found along the long axis of the investigated sample crystal and the mean value of the Tl concentration was measured to be 0.0839(38)% by weight. This corresponds to a light output of 97.3−1.7 +1.3% relative to the maximum attainable light output according to previously published work. By taking the ±1σ bounds, the 3% statistical spread in the relative light output provides a good reference value of the minimum light-output non-uniformity observed for the CALIFA crystals. If the relative light output is estimated pointwise from a set of Tl concentration measurements a light-output non-uniformity of 4.6(2.4)% results. For a γ-ray energy of 662 keV the deduced variation in Tl concentration contributes with 0.48(6)% to the typical resolution of 7.74(6)% measured with a collimated source along the crystal main axis. The result is of interest for the characterization of the detector system performance and for realistic simulations of the light collection process in detector systems that are used for nuclear spectroscopy and calorimetry11sciescopu

    Performance recovery of long CsI(Tl) scintillator crystals with APD-based readout

    No full text
    6 pags., 8 figs., 3 tabs.CALIFA is the high efficiency and energy resolution calorimeter for the RB experiment at FAIR, intended for detecting high energy light charged particles and gamma rays in scattering experiments, and is being commissioned during the Phase-0 experiments at FAIR, between 2018 and 2020. It surrounds the reaction target in a segmented configuration with 2432 detection units made of long CsI(Tl) finger-shaped scintillator crystals. CALIFA has a 10 year intended operational lifetime as the RB calorimeter, necessitating measures to be taken to ensure enduring performance. In this paper we present a systematic study of two groups of 6 different detection units of the CALIFA detector after more than four years of operation. The energy resolution and light output yield are evaluated under different conditions. Tests cover the aging of the first detector units assembled and investigates recovery procedures for degraded detection units. A possible reason for the observed degradation is given, pointing to the crystal-APD coupling.This work has been financially supported by the European Union Horizon 2020 research and innovation programme under grants agree-ments No 262010 (ENSAR) and No 654002 (ENSAR2), the Spanish MICCIN grants FPA47831-C2-1P and FPA2015-69640-C2-1-P, by the Plan Galego de Investigación, Innovación e Crecemento (I2C) of Xunta de Galicia, Spain under projects POS-B/2016/015, GRC2013-011 andED431C 2017/54 and by the German BMBF (No. 05P19RDFN1), TUDarmstadt - GSI cooperation contract, HIC for FAIR

    Commissioning of the CALIFA Barrel Calorimeter of the R3B Experiment at FAIR

    No full text
    5 pags., 4 figs. -- FAIRNESS2019: FAIR NExt generation ScientistS 20-24 May 2019, Arenzano, Genova, ItalyCALIFA is the high efficiency and energy resolution calorimeter for the R3B experiment at FAIR, intended for detecting high energy charged particles and ¿-rays in inverse kinematics direct reactions. It surrounds the reaction target in a segmented configuration of Barrel and Forward End-Cap pieces. The CALIFA Barrel consists of 1952 detection units made of CsI(Tl) long-shaped scintillator crystals, and it is being commissioned during the Phase0 experiments at FAIR. The first setup for the CALIFA Barrel commissioning is presented here. Results of detector performance with ¿-rays are obtained, and show that the system fulfills the design requirements.The author’s work has been financially supported by the Spanish MICCIN grant FPA2015-69640-C2-1-P

    Tl concentration and its variation in a CsI(Tl) crystal for the CALIFA detector

    No full text
    One of the factors that can contribute to the resolution of long, doped inorganic scintillators used for nuclear spectroscopy is the variation of the dopant concentration over the length the detector crystal. In this work an investigation of such potential variations in one of the CsI(Tl) scintillators used in the calorimeter, CALIFA, of the R3B experiment at FAIR, has been performed using particle induced X-ray emission. No statistically significant gradient in doping level was found along the long axis of the investigated sample crystal and the mean value of the Tl concentration was measured to be 0.0839(38)% by weight. This corresponds to a light output of 97.3−1.7 +1.3% relative to the maximum attainable light output according to previously published work. By taking the ±1σ bounds, the 3% statistical spread in the relative light output provides a good reference value of the minimum light-output non-uniformity observed for the CALIFA crystals. If the relative light output is estimated pointwise from a set of Tl concentration measurements a light-output non-uniformity of 4.6(2.4)% results. For a γ-ray energy of 662 keV the deduced variation in Tl concentration contributes with 0.48(6)% to the typical resolution of 7.74(6)% measured with a collimated source along the crystal main axis. The result is of interest for the characterization of the detector system performance and for realistic simulations of the light collection process in detector systems that are used for nuclear spectroscopy and calorimetry

    Simulations of light collection in long tapered CsI(Tl) scintillators using real crystal surface data and comparisons to measurement

    Get PDF
    10 pags., 9 figs., 2 tabs.Simulation results for light transport in long tapered CsI(Tl) crystals using look-up tables (LUTs) are presented. The LUTs were derived from the topography of a polished and a lapped surface of a CsI(Tl) crystal measured with atomic force microscopy. Simulations with different combinations of polished and lapped surfaces were performed, to extract the non-uniformity of light collection depending on the interaction point, and compared to experimental results. The simulations reproduce the general trend given by the measurements, and show that more homogeneous light collection is attained when all lateral sides of the crystal are lapped. For the lapped crystal the simulation model is most sensitive to the reflectivity of the enhanced specular reflector (ESR) foil surrounding the crystal, which is one of several properties influencing the light transport examined in this study. The sensitivity of the light-output non-uniformity to variations in the absorption length observed in a batch of CsI(Tl) crystals in a previous study is also discussed. Residual differences between the simulation and the measurements can potentially be attributed to the scattering of scintillation photons inside the materials used. Additional measurements to further advance the construction of the simulation model are suggested.This work was supported by the Swedish research council (VR) grants 2017-03986, 2014-06644, 2013-04178, 2012-04550, BMBF contracts 05P15WOFNA, 05P19WOFN1, 05P15RDFN1, 05P19RDFN1, the TU Darmstadt – GSI cooperation contract HIC for FAIR, by the Spanish research council grants FPA02015-64969-P (MINDECO/FEDER/EU), FPA2015-69640-C2-1-P, PGC2018-099746-B-C21, MDM-2016.0692 (MINECO/FEDER/EU) and by ED431C-2017/54 and EDB481-2017/002 (Xunta de Galicia/FEDER/EU).Peer reviewe
    corecore