48 research outputs found

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

    Get PDF
    High-energy gamma rays are promising tools to constrain or reveal the nature of dark matter, in particular Weakly Interacting Massive Particles. Being well into its pre-construction phase, the Cherenkov Telescope Array (CTA) will soon probe the sky in the 20 GeV - 300 TeV energy range. Thanks to its improved energy and angular resolutions as well as significantly larger effective area when compared to the current generation of Cherenkov telescopes, CTA is expected to probe heavier dark matter, with unprecedented sensitivity, reaching the thermal annihilation cross-section at 1 TeV. This talk will summarise the planned dark matter search strategies with CTA, focusing on the signal from the Galactic centre. As observed with the Fermi LAT at lower energies, this region is rather complex and CTA will be the first ground-based observatory sensitive to the large scale diffuse astrophysical emission from that region. We report on the collaboration effort to study the impact of such extended astrophysical backgrounds on the dark matter search, based on Fermi-LAT data in order to guide our observational strategies, taking into account various sources of systematic uncertainty

    CTA sensitivity on TeV scale dark matter models with complementary limits from direct detection

    Full text link
    Abstract With ever increasing pressure from collider physics and direct detection experiments, particle physics models of TeV scale dark matter are gaining more attention. In this work, we consider two realizations of the class of scalar portal dark matter scenarios — the inverse seesaw model and the inert doublet model. Observations by the Cherenkov Telescope Array (CTA) of very-high-energy γ rays from dark matter annihilation in the context of these models are simulated for the Draco and Sculptor dwarf spheroidal galaxies, and later analyzed using ctools. We study the potential of CTA for the 5σ detection of a dark matter annihilation signal. In the absence of a signal, we also derive the 2σ upper limits on the annihilation cross-section. We compare our projected CTA sensitivity against the projected sensitivity of the next generation of direct detection experiment, i.e. XENONnT. Although the limits from CTA are significantly improved compared with the previous generations of γ-ray experiments, they are still ∼2 orders of magnitude above the thermal relic cross-section for the considered targets. In the case of the inverse seesaw model, the constraint from the future direct detection experiment XENONnT is much weaker than the CTA sensitivity, whereas for the inert doublet model, XENONnT gives a bound an order of magnitude stronger compared to the CTA limits.</jats:p

    CTA Sensitivity on TeV scale Dark Matter Models with Complementary Limits from Direct Detection

    Full text link
    With ever increasing pressure from collider physics and direct detection experiments, particle physics models of TeV scale dark matter are gaining more attention. In this work, we consider two realizations of the class of scalar portal dark matter scenarios -- the inverse seesaw model and the inert doublet model. Observations by the Cherenkov Telescope Array (CTA) of very-high-energy γ\gamma rays from dark matter annihilation in the context of these models are simulated for the Draco and Sculptor dwarf spheroidal galaxies, and later analyzed using ctools. We study the potential of CTA for the 5σ\sigma detection of a dark matter annihilation signal. In the absence of a signal, we also derive the 2σ\sigma upper limits on the annihilation cross-section. We compare our projected CTA sensitivity against the projected sensitivity of the next generation of direct detection experiment, i.e. XENONnT. Although the limits from CTA are significantly improved compared with the previous generations of γ\gamma-ray experiments, they are still 2\sim2 orders of magnitude above the thermal relic cross-section for the considered targets. In the case of the inverse seesaw model, the constraint from the future direct detection experiment XENONnT is much weaker than the CTA sensitivity, whereas for the inert doublet model, XENONnT gives a bound an order of magnitude stronger compared to the CTA limits.Comment: 18 pages, 6 figures, 3 table

    CTA – the World’s largest ground-based gamma-ray observatory

    Get PDF
    International audienc

    Detection methods for the Cherenkov Telescope Array at very-short exposure times

    No full text
    The Cherenkov Telescope Array (CTA) will be the next generation ground-based observatory for very-high-energy (VHE) gamma-ray astronomy, with the deployment of tens of highly sensitive and fast-reacting Cherenkov telescopes. It will cover a wide energy range (20 GeV - 300 TeV) with unprecedented sensitivity. To maximize the scientific return, the observatory will be provided with an online software system that will perform the first analysis of scientific data in real-time. This study investigates the precision and accuracy of available science tools and analysis techniques for the short-term detection of gamma-ray sources, in terms of sky localization, detection significance and, if significant detection is achieved, a first estimation of the integral photon flux. The scope is to evaluate the feasibility of the algorithms' implementation in the real-time analysis of CTA. In this contribution we present a general overview of the methods and some of the results for the test case of the short-term detection of a gamma-ray burst afterglow, as the VHE counterpart of a gravitational wave event
    corecore