236 research outputs found

    Terremoto in Emilia Romagna (2012): le attivitĂ  del Centro Operativo Emergenza Sismica

    Get PDF
    Come definito negli accordi riportati nell’ambito della Convenzione1 esistente tra l’Istituto Nazionale di Geofisica e Vulcanologia (INGV) e il Dipartimento di Protezione Civile (DPC), a poche ore dal forte terremoto che nella notte del 20 maggio 2012 ha colpito una vasta area dell’Emilia [Moretti et al., 2012; 2013a], ù stato attivato il Pronto Intervento Sismico dell’INGV [Govoni et al., 2008; Moretti e Govoni, 2011; Moretti et al., 2010c]. Durante la prima settimana dell’emergenza l’obiettivo principale della struttura emergenziale INGV ha riguardato il miglioramento del monitoraggio sismico; sono state quindi attivate le reti sismiche mobili [maggiori dettagli in Moretti et al., 2012; 2013a] con il fine di integrare le stazioni permanenti della Rete Sismica Nazionale [RSN, Amato e Mele, 2008; Delladio et al., 2011]. Solo in una secondo momento, dopo circa 10 giorni dall’inizio della sequenza sismica ù stato ufficialmente attivato il Centro Operativo Emergenza Sismica [COES, Moretti et al., 2010a], a seguito del decreto del Capo del DPC, con il quale ù stata costituita la Direzione di Comando e Controllo (Di.Coma.C.2) presso l’Agenzia della Protezione Civile Regionale dell’Emilia Romagna (AgDPC) in Bologna. L’allestimento e il coordinamento del COES sono stati realizzati grazie alla collaborazione tra il Centro Nazionale Terremoti (CNT), a cui afferisce la struttura, e la Sezione INGV di Bologna, sita nel capoluogo della regione colpita dall’emergenza. In questo lavoro saranno descritte le modalità, le tempistiche e l’impegno di personale che hanno permesso e garantito l'attivazione e il buon funzionamento del COES

    Seismic Anisotropy beneath Northern Victoria Land from SKS Splitting Analysis

    Get PDF
    Abstract. Teleseismic data recorded by temporary and permanent stations located in the Northern Victoria Land region are analysed in order to identify the presence and location of seismic anisotropy. We work on data recorded by 24 temporary seismographic stations deployed between 1993 and 2000 in different zones of the Northern Victoria Land, and by the permanent very broad-band stations TNV located near the Italian Base M. Zucchelli. The temporary networks monitored an area extending from Terra Nova Bay towards the South beyond the David Glacier and up to the Indian Ocean northward. To better constrain our study, we also provide an analysis of data recorded by TNV in the same period of time and we take into account also SKS shear wave splitting measurements performed by Barruol and Hoffman (1999) on data recorded by DRV. This study, to be considered as preliminary, reveals the presence of seismic anisotropy below the study region, with a mainly NW-SE fast velocity direction below the Terra Nova Bay area and rather large delay times, that mean a deep rooted anisotropic layer

    Seismic Anisotropy of the Victoria Land region, Antactica

    Get PDF
    We present shear-wave splitting results obtained from the analysis of core refracted teleseismic phases recorded by permanent and temporary seismographic stations located in the Victoria Land region (Antarctica). We use an eigenvalue technique to isolate the rotated and shifted shear-wave particle motion, in order to determine the best splitting parameters. Average values show clearly that dominant fast axis direction is NE-SW oriented, in accordance with previous measurements obtained around this zone. Only two stations, OHG and STAR show different orientations, with N-S and NNW-SSE main directions. On the basis of the periodicity of single shear-wave splitting measurements with respect to back-azimuths of events under study, we infer the presence of lateral and vertical changes in the deep anisotropy direction. To test this hypothesis we model waveforms using a cross-convolution technique for the cases of one and two anisotropic layers. We obtain a significant improvement on the misfit in the double layer case for the two stations. For stations where a multi-layer structure does not fit, we investigate lateral anisotropy changes at depth through Fresnel zone computation. We find that anisotropy beneath the Transantarctic Mountains (TAM) is considerably different from that beneath the Ross Sea. This feature influences the measurement distribution for the two permanent stations TNV and VNDA. Our results show a dominant NE-SW direction over the entire region, but other anisotropy directions are present and maybe interpreted in the context of regional tectonics

    Seismic Anisotropy Analysis in the Victoria Land Region (Antarctica)

    Get PDF
    We present shear-wave splitting results obtained from analysis of core refracted teleseismic phases recorded by permanent and temporary seismographic stations located in the Victoria Land region (Antarctica). We used eigenvalue technique to linearize the rotated and shifted shear-wave particle motion, in order to determine the best splitting parameters. A well-scattered distribution of single shear-wave measurements has been obtained. Average values show clearly that dominant fast axis direction is NE-SW oriented, accordingly with previous measurements obtained around this zone. Only two stations, OHG and STAR show different orientations, with N-S and NNW-SSE main directions. On the basis of the periodicity of single shear-wave splitting measurements with respect to back-azimuths of events under study, we inferred the presence of lateral and vertical changes in the deep anisotropy direction. To test this hypothesis we have modelling waveforms using a cross-convolution technique in one and two anisotropic layer's cases. We obtained a significant improvement on the misfit in the double layer case for the cited couple of stations. For stations where a multi-layer structure does not fit, we looked for evidences of lateral anisotropy changes at depth through Fresnel zone computation. As expected, we find that anisotropy beneath the Transantarctic Mountains (TAM) is considerably different from that beneath the Ross Sea. This feature influences the measurement distribution for the two permanent stations TNV and VNDA. Our results show a dominant NE-SW direction over the entire region, but other anisotropy directions are present and find an interpretation when examined in the context of regional tectonics

    A New Semi-Continuous GPS Network and Temporary Seismic Experiment Across the Montello-Conegliano Fault System (NE-Italy)

    Get PDF
    The Montello–Conegliano Thrust is the most remarkable structure of the Southern Alpine fault belt in the Veneto-Friuli plain, as a result of the conspicuous morphological evidence of the Montello anticline, which is associated to uplifted and deformed river terraces, diversion of the course of the Piave River, as well as vertical relative motions registered by leveling lines (Galadini et al., 2005; Burrato et al., 2008). Many papers dealt with its geometry and evolution, and the presence of several orders of Middle and Upper Pleistocene warped river terraces (Benedetti et al., 2000) in the western sector strongly suggests that the Montello–Conegliano anticline is active and driven by the underlying thrust. However, in spite of the spectacular geomorphic and geologic evidence of activity of the Montello-Conegliano Thrust, there is only little evidence on how much contractional strain is released through discrete events (i.e. earthquakes) and how much goes aseismic. Benedetti et al. (2000) hypothesized that the western part of the thrust (Montello) may have slipped three times in the past 2000 years (during the Mw 5.8 778 A.D., Mw 5.4 1268 and Mw 5.0 1859 earthquakes), yielding a mean recurrence time of about 500 years, whereas, the eastern part of the thrust (Conegliano) would be silent. The Italian seismic catalogues have very poor-quality and incomplete data for these events associated with the Montello thrust, leaving room for different interpretations, as for example the possibility that these earthquakes were generated by nearby secondary structures. In this latter case, the whole Montello–Conegliano Thrust would represent a major “silent” structure, with a recurrence interval longer than 700 years, because none of the historical earthquakes reported in the Italian Catalogues of seismicity for the past seven centuries can be convincingly referred to the Montello Source. Given the uncertainties regarding the seismic potential of this segment of the Southern Alpine fault system, we designed and realized a new GPS network across the Montello region (Fig. 1), with the goal of detecting the present-day velocity gradient pattern and develop models of the inter-seismic deformation (i.e., geometry, kinematics and coupling of the seismogenic fault). In the 2009, we started realizing a new concept of GPS experiment, called “semi-continuous”. As the name suggests, the method involves moving a set of GPS receivers around a permanently installed network of monuments, such that each station is observed some fraction of the time. In practice, a set of GPS receivers can literally remain in the field for their entire life span, thus maximizing their usage. The monuments are designed with special mounts so that the GPS antenna is forced to the same physical location at each site. This has the advantage of mitigating errors (including possible blunders) in measuring the antenna height and in centering the antenna horizontally. This also has the advantage of reducing variation in multipath bias from one occupation session to another. The period of each “session” depends on the design of the operations. At one extreme, some stations might act essentially as permanent stations (though the equipment is still highly mobile), thus providing a level of reference frame stability, and some stations may only be occupied every year or two, in order to extend or increase the density of a network’s spatial coverage. In this work we will present the motivations and tools used to develop and implement the new GPS network. During the 2010 we will integrate the existing GPS network with 10 mobile seismic stations, belonging to the INGV mobile network, with the goal of illuminate local micro-seismicity patterns that would help constraining the locked fault geometry

    Standardization of Seismic Tomographic Models and Earthquake Focal Mechanisms Datasets Based on Web Technologies, Visualization with Keyhole Markup Language

    Get PDF
    We present two projects in seismology that have been ported to web technologies, which provide results in Keyhole Markup Language (KML) visualization layers. These use the Google Earth geo-browser as the flexible platform that can substitute specialized graphical tools to perform qualitative visual data analyses and comparisons. The Network of Research Infrastructures for European Seismology (NERIES) Tomographic Earth Model Repository contains datasets from over 20 models from the literature. A hierarchical structure of folders that represent the sets of depths for each model is implemented in KML, and this immediately results into an intuitive interface for users to navigate freely and to compare tomographic plots. The KML layer for the European-Mediterranean Regional Centroid-Moment Tensor Catalog displays the focal mechanism solutions or moderate magnitude Earthquakes from 1997 to the present. Our aim in both projects was to also propose standard representations of scientific datasets. Here, the general semantic approach of XML has an important impact that must be further explored, although we find the KML syntax to be more shifted towards detailed visualization aspects. We have thus used, and propose the use of, Javascript Object Notation (JSON), another semantic notation that stems from the web-development community that provides a compact, general-purpose, data-exchange format

    Seismic moment tensors of the April 2009, L'Aquila (Central Italy), earthquake sequence

    Get PDF
    On 2009 April 6, the Central Apennines were hit by an Mw = 6.3 earthquake. The region had been shaken since 2008 October by seismic activity that culminated in two foreshocks with Mw > 4, 1 week and a few hours before the main shock. We computed seismic moment tensors for 26 events with Mw between 3.9 and 6.3, using the Regional Centroid Moment Tensor (RCMT) scheme. Most of these source parameters have been computed within 1 hr after the earthquake and rapidly revised successively. The focal mechanisms are all extensional, with a variable and sometimes significant strike-slip component. This geometry agrees with the NE-SW extensional deformation of the Apennines, known from previous seismic and geodetic observations. Events group into three clusters. Those located in the southern area have larger centroid depths and a wider distribution of T-axis directions. These differences suggest that towards south a different fault system was activated with respect to the SW-dipping normal faults beneath L'Aquila and more to the nort

    Seismic moment tensors of the April 2009, L'Aquila (Central Italy), earthquake sequence

    Get PDF
    On 2009 April 6, the Central Apennines were hit by an Mw = 6.3 earthquake. The region had been shaken since 2008 October by seismic activity that culminated in two foreshocks with Mw > 4, 1 week and a few hours before the main shock. We computed seismic moment tensors for 26 events with Mw between 3.9 and 6.3, using the Regional Centroid Moment Tensor (RCMT) scheme. Most of these source parameters have been computed within 1 hr after the earthquake and rapidly revised successively. The focal mechanisms are all extensional, with a variable and sometimes significant strike-slip component. This geometry agrees with the NE-SW extensional deformation of the Apennines, known from previous seismic and geodetic observations. Events group into three clusters. Those located in the southern area have larger centroid depths and a wider distribution of T-axis directions. These differences suggest that towards south a different fault system was activated with respect to the SW-dipping normal faults beneath L'Aquila and more to the nort

    Seismic moment tensors of the April 2009, L'Aquila (Central Italy), earthquake sequence

    Get PDF
    On 2009 April 6, the Central Apennines were hit by an Mw= 6.3 earthquake. The region had been shaken since 2008 October by seismic activity that culminated in two foreshocks with Mw > 4, 1 week and a few hours before the main shock. We computed seismic moment tensors for 26 events with Mw between 3.9 and 6.3, using the Regional Centroid Moment Tensor (RCMT) scheme. Most of these source parameters have been computed within 1 hr after the earthquake and rapidly revised successively. The focal mechanisms are all extensional, with a variable and sometimes significant strike-slip component. This geometry agrees with the NE–SW extensional deformation of the Apennines, known from previous seismic and geodetic observations. Events group into three clusters. Those located in the southern area have larger centroid depths and a wider distribution of T-axis directions. These differences suggest that towards south a different fault system was activated with respect to the SW-dipping normal faults beneath L’Aquila and more to the north

    Seismic moment tensors of the April 2009, L’Aquila (Central Italy),

    Get PDF
    On 2009 April 6, the Central Apennines were hit by an Mw = 6.3 earthquake. The region had been shaken since 2008 October by seismic activity that culminated in two foreshocks with Mw > 4, 1 week and a few hours before the main shock. We computed seismic moment tensors for 26 events with Mw between 3.9 and 6.3, using the Regional Centroid Moment Tensor (RCMT) scheme. Most of these source parameters have been computed within 1 hr after the earthquake and rapidly revised successively. The focal mechanisms are all extensional, with a variable and sometimes significant strike-slip component. This geometry agrees with the NE–SW extensional deformation of the Apennines, known from previous seismic and geodetic observations. Events group into three clusters. Those located in the southern area have larger centroid depths and a wider distribution of T-axis directions. These differences suggest that towards south a different fault systemwas activated with respect to the SW-dipping normal faults beneath L’Aquila and more to the north
    • 

    corecore