1 research outputs found
Obesity promotes fumonisin B1 hepatotoxicity
Obesity, which is a worldwide public health issue, is associated with chronic inflammation that contribute to long-term complications, including insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease. We hypothesized that obesity may also influence the sensitivity to food contaminants, such as fumonisin B1 (FB1), a mycotoxin produced mainly by the Fusarium verticillioides. FB1, a common contaminant of corn, is the most abundant and best characterized member of the fumonisins family. We investigated whether diet-induced obesity could modulate the sensitivity to oral FB1 exposure, with emphasis on gut health and hepatotoxicity. Thus, metabolic effects of FB1 were assessed in obese and non-obese male C57BL/6J mice. Mice received a high-fat diet (HFD) or normal chow diet (CHOW) for 15 weeks. Then, during the last three weeks, mice were exposed to these diets in combination or not with FB1 (10 mg/kg body weight/day) through drinking water. As expected, HFD feeding induced significant body weight gain, increased fasting glycemia, and hepatic steatosis. Combined exposure to HFD and FB1 resulted in body weight loss and a decrease in fasting blood glucose level. This co-exposition also induces gut dysbiosis, an increase in plasma FB1 level, a decrease in liver weight and hepatic steatosis. Moreover, plasma transaminase levels were significantly increased and associated with liver inflammation in HFD/FB1-treated mice. Liver gene expression analysis revealed that the combined exposure to HFD and FB1 was associated with reduced expression of genes involved in lipogenesis and increased expression of immune response and cell cycle-associated genes. These results suggest that, in the context of obesity, FB1 exposure promotes gut dysbiosis and severe liver inflammation. To our knowledge, this study provides the first example of obesity-induced hepatitis in response to a food contaminant.L.D. PhD was supported by the INRAE Animal Health department. This work was also supported by grants from the French National Research Agency (ANR) Fumolip (ANR-16-CE21-0003) and the Hepatomics FEDER program of Région Occitanie. We thank Prof Wentzel C. Gelderblom for generously providing the FB1 and for his interest and support in our project. B.C. laboratory is supported by a Starting Grant from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. ERC-2018-StG- 804135), a Chaire d'Excellence from IdEx Université de Paris - ANR-18-IDEX-0001, an Innovator Award from the Kenneth Rainin Foundation, an ANR grant EMULBIONT ANR-21-CE15-0042-01 and the national program “Microbiote” from INSERM. We thank Anexplo (Genotoul, Toulouse) for their excellent work on plasma biochemistry. Neutral Lipids MS and NMR experiments were performed with instruments in the Metatoul-AXIOM platform. Sphingolipid MS analysis were performed with instruments in the RUBAM platform. The FB1 plasma levels were determined using an UPLC-MS/MS instrument part of the Ghent University MSsmall expertise centre for advanced mass spectrometry analysis of small organic molecules. We thank Elodie Rousseau-Bacquié and all members of the EZOP staff for their assistance in the animal facility. We are very grateful to Talal al Saati for histology analyses and review, and we thank all members of the US006/CREFRE staff at the histology facility and the Genom'IC platforms (INSERM U1016, Paris, France) for their expertise.Peer reviewe