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• Obese mice had altered body weight, glu-
cose, and liver lipids when exposed
to FB1.

• FB1 increased markers of hepatotoxicity
in obese mice, not in regular diet mice.

• FB1 caused liver inflammation in obese
mice, not in regular diet mice.

• Obesity increase toxicity of FB1 and may
enhance toxicity of other food contami-
nants.

• Diet andmetabolic status affect the health
risks assessment from food contaminants.
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Obesity, which is aworldwide public health issue, is associatedwith chronic inflammation that contribute to long-term
complications, including insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease. We hypothesized that
obesity may also influence the sensitivity to food contaminants, such as fumonisin B1 (FB1), a mycotoxin produced
mainly by the Fusarium verticillioides. FB1, a common contaminant of corn, is the most abundant and best character-
izedmember of the fumonisins family. We investigated whether diet-induced obesity couldmodulate the sensitivity to
oral FB1 exposure, with emphasis on gut health and hepatotoxicity.
Thus, metabolic effects of FB1 were assessed in obese and non-obese male C57BL/6J mice. Mice received a high-fat
diet (HFD) or normal chow diet (CHOW) for 15 weeks. Then, during the last three weeks, mice were exposed to
these diets in combination or not with FB1 (10 mg/kg body weight/day) through drinking water.
As expected, HFD feeding induced significant body weight gain, increased fasting glycemia, and hepatic steatosis.
Combined exposure to HFD and FB1 resulted in body weight loss and a decrease in fasting blood glucose level. This
FLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis.
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co-exposition also induces gut dysbiosis, an increase in plasma FB1 level, a decrease in liver weight and hepatic stea-
tosis. Moreover, plasma transaminase levels were significantly increased and associated with liver inflammation in
HFD/FB1-treated mice. Liver gene expression analysis revealed that the combined exposure to HFD and FB1 was as-
sociated with reduced expression of genes involved in lipogenesis and increased expression of immune response and
cell cycle-associated genes.
These results suggest that, in the context of obesity, FB1 exposure promotes gut dysbiosis and severe liver inflamma-
tion. To our knowledge, this study provides thefirst example of obesity-induced hepatitis in response to a food contam-
inant.
1. Introduction

The prevalence of obesity has reached 13 % of the adult population
worldwide, and 39 % of the world's adult population is considered over-
weight (World Health Organization, 2021). Therefore, obesity is consid-
ered as an epidemic disease and represents a major public health burden
worldwide. Obesity promotes many other diseases, such as type 2 diabetes,
cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD).
Obesity fosters disease development through a combination of metabolic
changes (Cirulli et al., 2019) and chronic low-grade inflammation (Rohm
et al., 2022). Indeed, NAFLD gathers a spectrum of liver disorders, ranging
from simple hepatic steatosis considered benign to non-alcoholic steatohep-
atitis (NASH), which is characterized by lipid accumulation, hepatocyte
death, inflammation, and activation of fibrogenic pathways that can lead
to hepatic fibrosis, cirrhosis, liver failure, and/or hepatocellular carcinoma
(Ristic-Medic et al., 2022).

Excessive lipid accumulation in the liver is known to contribute to he-
patic insulin resistance by generating bioactive lipid intermediates, includ-
ing ceramides, which are thought to play an important role in the
development of hepatic insulin resistance by affecting the insulin signaling
pathway (Hage Hassan et al., 2014). Increased serum and tissue ceramide
levels have been observed in mice with genetic or diet-induced obesity
(Samad et al., 2006; Holland et al., 2007) and in mouse models of non-
alcoholic steatohepatitis (NASH) (Montandon et al., 2019). Studies using
various animal models have demonstrated that de novo ceramide synthesis
plays a pathogenic role in NAFLD by inducing insulin resistance, increasing
oxidative stress, promoting apoptosis, and ultimately leading to steatosis,
inflammation, and fibrosis (Longato et al., 2012; Raichur et al., 2019). Fi-
nally, studies have reported that ceramides accumulate in serum andmeta-
bolically active tissues such as the liver in individuals with NAFLD
(Hajduch et al., 2021; Luukkonen et al., 2016) and in nonhuman primates
(Brozinick et al., 2013).

Obesity is highly linked to lifestyle and the environment. High-caloric-
density diets and reduced physical activities are thought to play an impor-
tant role in the development of this epidemic. In addition to genetic factors,
many environmental factors influence obesity (Pillon et al., 2021), includ-
ing xenobiotics, endocrine disruptors (Sun et al., 2022), and other food ad-
ditives (Chassaing et al., 2015; Suez et al., 2014). Although there is
increasing evidence that food contaminants can impact the development
of obesity, very few studies have investigated the influence of obesity on
the sensitivity to food contaminants.

Mycotoxins are fungal toxins that contaminate animal feed and human
foodworldwide; thus, they cause significant veterinary and public health is-
sues. Fusarium spp. is among the most frequent of the fungal genera found
in different cereal crops; it causes economic loss and food safety concerns,
because it reduces the cereal yield and quality (Cano et al., 2016). More-
over, climate change has led to shifts in temperature and humidity condi-
tions, which favor Fusarium dissemination (Nnadi and Carter, 2021).
Fumonisins are the predominant mycotoxins produced by Fusarium spp.,
and fumonisin B1 (FB1) is the most prevalent and the most documented
member of this family (Knutsen et al., 2018a). Similarly, fumonisin B2
(FB2), which lacks one hydroxy group in its chemical structure compared
to FB1, is the second most commonmember of this family of toxins. Never-
theless, both members FB1and FB2 should be considered as having the
same toxicity due to their synergistic effects in combination (Knutsen
2

et al., 2018a, b; Yu et al., 2020). In 2007, the European Union set recom-
mendations and regulations (Commission Recommendation 2006 [Ec] No
576/, 2006; Commission Regulation 2007 [Ec] No 1126/, 2007) for the
maximum levels of fumonisins (sum of FB1 and FB2) allowed in animal
feed (from 5 mg/kg for pig feed to 50 mg/kg for adult ruminant feed)
and human foodstuffs (from 0.2 mg/kg for baby foods to 4 mg/kg for un-
processed maize).

FB1 exposure induces severe mycotoxicosis in pigs (Knutsen et al.,
2018b), with diverse clinical symptoms. The most common symptoms are
nephrotoxicity, hepatotoxicity (Terciolo et al., 2019), immunotoxicity
(Devriendt et al., 2009; Halloy et al., 2005), and intestinal barrier function
disturbances (Bouhet et al., 2006; Loiseau et al., 2007). To date, the known
molecular mechanisms underlying FB1 toxicity are mostly related to its in-
hibitory effect on sphingolipid biosynthesis (Wang et al., 1991; Chen et al.,
2021). Indeed, FB1 and sphingoid long-chain bases share similar structural
backbone features. The inhibition of ceramide synthase increases free
sphinganine levels and reduces the abundance of complex sphingolipids
and ceramides (Loiseau et al., 2007). This effect results in elevating the
ratio of free sphingoid bases (sphinganine/sphingosine, Sa/So) in several
tissues (e.g., liver and intestine), in plasma, and in cell lines (Grenier
et al., 2012; Riley et al., 1993). Moreover, previous studies from our
group showed that sphingolipid metabolism and FB1 had a significant in-
fluence on lipid metabolism. Indeed, experiment with pigs exposed to
FB1-contaminated diet (10 mg/kg) during 4 weeks highlights the involve-
ment of the phosphoinositide 3-kinase (PI3K)/Protein Kinase B (AKT) /
protein phosphatase 2 (PP2A) and tensin homolog (PTEN) – a common
lipid metabolism regulating pathway- at the intersection of the FB1-
modulated pathways (Régnier et al., 2017; Régnier et al., 2019a, b).

Therefore, the current study aimed to investigate the effect of obesity on
FB1 toxicity. Thus, we fed mice a high-fat diet (HFD) to induce obesity
in vivo. Next, we investigated the systemic effects through the evolution
of the gut microbiota ecology balance and the hepatic responses to FB1 ex-
posure, in both normal-weight and obese mice.

2. Materials and methods

2.1. Animals, diet, and exposure to FB1

All experiments were carried out in accordance with the European
Guidelines for the Care and Use of Animals for Research Purposes. The an-
imal study protocol was approved by an independent ethics committee
(CEEA-86 Toxcométhique) under the authorization number
2016070116429578. The animals were treated humanely with due consid-
eration to the alleviation of distress and discomfort. Mouse housing was
controlled for temperature (21–23 °C) and light (12 h light/12 h dark). A
total of 48 C57BL/6Jmalemice (6weeks old) were purchased fromCharles
Rivers Laboratories (L'Arbresle, France). Mice were allowed two weeks of
acclimatization with free access and ad libitumwater and food, with a stan-
dard rodent diet (safe 04 U8220G10R) from SAFE (Augy, France). Then,
mice were randomly divided into four groups of 12 mice each. Two groups
(n=24, 4 cages of 6mice) were fed a chow diet with 10 kcal% fat (CHOW,
D12450J, Research Diets) and the other two groups (n = 24, 4 cages of 6
mice) were fed a high-fat diet with 60 kcal% fat (HFD, D12492, Research
Diets) for 15 weeks. After 12 weeks of feeding, half of the CHOW (n =
12, 2 cages of 6 mice) and HFD (n = 12, 2 cages of 6 mice) groups were
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exposed to FB1 (10 mg/kg bw/day) by adjusting every two days the
amount of consumed FB1 in the drinking water during 3 weeks in order
to maintain a constant level of exposure. Every week, mice were weighed,
and water consumption was measured to adjust the quantity of FB1 in the
water. Food intake was also monitored. At the end of the experiment,
mice were sacrificed to collect plasma and tissue samples.

2.2. Blood and tissue sampling

After 15 weeks of feeding, mice were fasted for 6 h, and blood glucose
levels were measured from the tail vein with an AccuCheck Performa
glucometer (Roche Diagnostics). At the end of the experiment, blood was
collected into EDTA-coated tubes (BD Microtainer, K2E tubes) from the
submandibular vein. Plasma was isolated by centrifugation (1500 ×g for
10 min at 4 °C) and stored at −80 °C until use for plasma biochemistry.
All mice were sacrificed on the day 104 in the fed state. Following sacrifice
by cervical dislocation, liver and caecumwere removed, weighed, prepared
for histology analysis or snap frozen in liquid nitrogen and stored at
−80 °C.

2.3. Plasma FB1 analysis

Equal volumes of plasma of 4 individual mice from each group were
pooled and 100 μl was used for analysis. Considering this pooling of sam-
ples, only 3 FB1 level analysis have been performed per group. Plasma
FB1was analyzed with a validated UPLC-MS/MS (ultra-performance liquid
chromatography-tandemmass spectrometry) method previously described
(De Baere et al., 2018). The FB1 analytical standard was provided by
Fermentek Ltd. (Jerusalem, Israel). The limit of quantification was deter-
mined at 0.5 ng/ml, using 100 μl of plasma. The limit of detection, corre-
sponding to a signal-to-noise value of 3/1, was 0.09 ng/ml.

2.4. Biochemical analyses

We analyzed the following plasma constituents: alanine aminotransfer-
ase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP),
bilirubin, creatinine, triglycerides, total cholesterol, high density lipopro-
tein, and low-density lipoprotein cholesterol. All biochemical analyses
were performed with a COBASMIRA+ by the Anexplo technical platform
team (Genotoul, Toulouse).

2.5. Lipid extraction and analysis

Liver samples were homogenized in Lysing Matrix D tubes with 1 ml of
methanol/5 mM EGTA (2:1 v/v) in a FastPrep machine (MPBiochemicals).
Lipids corresponding to an equivalent of 2 mg of tissue were extracted ac-
cording to Bligh and Dyer, in chloroform/methanol/water (2.5:2.5:2, v/
v/v), in the presence of the following internal standards: glyceryl
trinonadecanoate, stigmasterol, and cholesteryl heptadecanoate (Sigma,
Saint-Quentin-Fallavier, France). Total lipids were suspended in 160 μl
ethyl acetate, and the triglycerides, free cholesterol, and cholesterol ester
components were analyzed with FID gas-chromatography on a focus
ThermoElectron systemwith a Zebron-1 Phenomenex fused-silica capillary
column (5m, 0.32mm i.d., 0.50mmfilm thickness). The oven temperature
was programmed to increase from 200 to 350 °C at a rate of 5 °C/min, and
the carrier gas was hydrogen (0.5 bar). The injector and the detector were
at 315 °C and 345 °C, respectively.

Liver ceramide, sphingomyelin, sphingosine, and sphinganine were ex-
tracted, as previously described (Barbacini et al., 2019), with chloroform/
water/methanol (2.5:1:5 v/v/v) in the presence of the following internal
standards: ceramide d18:1/12:0 (16 ng), sphingomyelin d18:1/12:0
(16 ng), sphingosine 17:0, and sphinganine 17:0 and sphingosine-1-phos-
phate 17:0. Sphingolipids and internal standards were analyzed by liquid
chromatography mass spectrometry (LC-MS) with an Acquity ultra high-
performance liquid chromatography (UHPLC) system (Waters, USA) con-
nected to a Time of Flight (LCT Premier XE, Waters, USA) Detector or a
3

triple quadrupole mass spectrometer (Xevo, Waters, USA). The final data
were calculated as pmol/mg of protein.

2.6. Proton nuclear magnetic resonance (1H NMR)-based metabolomics

1H NMR spectroscopy was performed on aqueous liver extracts pre-
pared from liver samples (50–75 mg). Briefly, livers were homogenized
in chloroform/methanol/NaCl 0.9 % (2/1/0.6, v/v/v) containing 0.1 %
butyl hydroxytoluene. Homogenates were centrifuged at 5000 ×g for
10 min. The supernatant was collected, lyophilized, and reconstituted
in 600 μl of D2O that contained 0.25 mM 3-(trimethylsilyl) propionic-
(2,2,3,3-d4) acid sodium salt (TSP), as a chemical shift reference at
0 ppm.

All 1H NMR spectra were obtained on a Bruker DRX-600-Avance NMR
spectrometer (Bruker) equipped with the AXIOM metabolomics platform
(MetaToul). The instrument was operated at 600.13 MHz for 1H resonance
frequency. It included an inverse detection 5-mm 1H–13C-15N cryoprobe at-
tached to a cryoplatform (the preamplifier cooling unit).

1H NMR spectra were acquired at 300 K with a standard, one-
dimensional noesypr1D pulse sequence with water presaturation and a
total spin-echo delay (2 ns) of 100 ms. Data were analyzed by applying an
exponential window function with a 0.3-Hz line broadening, prior to Fou-
rier transformation. The resulting spectra were phased, baseline-
corrected, and calibrated to TSP (0.00 ppm) manually with Mnova NMR
(version 9.0; Mestrelab Research S.L.). The spectra were subsequently
imported into MatLab (R2014a; MathWorks, Inc.). All data were analyzed
with the use of full-resolution spectra. The 1H NMR peak assignments of
aqueous phase extracts from liver are presented in Supplementary
Table 2. The region containing the water resonance (4.6–5.2 ppm) was re-
moved, and the spectra were normalized to the probabilistic quotient
(Dieterle et al., 2006) and aligned with a previously published function
(Veselkov et al., 2009).

Datawere mean-centered and scaledwith unit variance scaling, prior to
performing orthogonal projection on latent structure-discriminant analysis
(O-PLS-DA). The O-PLS derived model was evaluated for accuracy of pre-
diction (Q2Y value) with 10-fold cross-validation. The parameters of the
final models are indicated in the figures. Metabolite identifications and dis-
criminations between the groups were performed by calculating the O-PLS-
DA correlation coefficients (r2) for each variable, and then, back-scaling
into a spectral domain to preserve the shapes of the NMR spectra and the
signs of the coefficients (Cloarec et al., 2005). The weights of the variables
were color-coded, according to the square of the O-PLS-DA correlation co-
efficients.

Correlation coefficients extracted from significant models were filtered,
and only significant correlations above the threshold defined by Pearson's
critical correlation coefficient (p < 0.05; r2 > 0.55; for n = 12 per group)
were considered significant. For illustration purposes, the areas under the
curves of several signals of interest were integrated, and significance was
tested with a univariate test.

2.7. Histology

Hematoxylin/eosin (H&E) staining was performed on paraformaldehyde-
fixed, paraffin-embedded liver tissue sections (3 μm). Sections were visual-
ized with a Leica DFC300 camera. Livers were examined with light micros-
copy. First, liver sections were screened to determine all the effects present
on each section. The histological features were grouped with the steatosis
score (evaluated according to Contos et al., 2001). Liver sections were evalu-
ated for steatosis and inflammation. The steatosis score was based on the per-
centage of vacuoles surface in hepatocytes that contained fat, where Grade
0 = no hepatocytes containing fat in any section; grade 1 = 1 % to 25 %
of hepatocytes; grade 2 = 26 % to 50 % of hepatocytes; grade 3 = 51 % to
75 % of hepatocytes; and grade 4 = 76 % to 100 % of hepatocytes. The in-
flammation scorewas the number of inflammatory foci counted in 10 distinct
200× fields for each liver section. Values represented the mean of 10 fields/
liver section.
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2.8. Gene expression studies

Total cellular RNAwas extractedwith Trizol reagent (Invitrogen). Tran-
scriptome profiles were performed with the Agilent Whole Mouse Genome
microarray (4× 44 K), according tomanufacturer instructions. Microarray
data and all experimental details are available in the Gene Expression Om-
nibus Series database (accession number GSE208735; https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE208735).

Total RNA samples (2 μg) were reverse-transcribed with the high-
capacity cDNA reverse transcription kit (Applied Biosystems), then ana-
lyzed with real-time quantitative polymerase chain reaction (qPCR).
Primers for the Sybr Green assays are presented in Supplementary
Table 1. Amplifications were performed on a Stratagene Mx3005P
thermocycler (Agilent Technology). qPCR data were normalized to the en-
dogenous level of proteasome 20S subunit beta 6 messenger RNA (mRNA)
and analyzed with LinRegPCR software.

2.9. Microbiota composition analysis through 16S rRNA gene sequencing

We performed 16S ribosomal RNA (rRNA) gene amplification and se-
quencing with Illumina MiSeq technology, according to the protocol de-
scribed by the Earth Microbiome Project, with slight modifications (www.
earthmicrobiome.org/emp-standard-protocols). Briefly, frozen extruded
feces samples were mechanically disrupted (bead beating), and DNA was
extracted with a PowerSoil-htp kit (QIAGEN). From each DNA sample,
the 16S rRNA genes from region V3-V4were PCR-amplifiedwith a compos-
ite forward primer and a reverse primer. The reverse primer contained a
unique 12-base barcode, designed with the Golay error-correcting scheme,
which was used to tag PCR products from respective samples. The compos-
ite forward 515F primer sequence was: 5′-AATGATACGGCGACCACCGAG
ATCTACACGCTXXXXXXXXXXXXTATGGTAATTGTGTGYCAGCMGCCG
CGGTAA-3′where the italicized sequence is the 5′ Illumina adaptor, the 12
X sequence is the golay barcode, the bold sequence is the primer pad, the
italicized and bold sequence is the primer linker, and the underlined se-
quence is the conserved bacterial primer 515F. The reverse primer 806R
used was 5′-CAAGCAGAAGACGGCATACGAGATAGTCAGCCAGCCGGAC
TACNVGGGTWTCTAAT-3′ where the italicized sequence is the 3′ reverse
complement sequence of Illumina adaptor, the bold sequence is the primer
pad, the italicized and bold sequence is the primer linker and the
underlined sequence is the conserved bacterial primer 806R. PCR reactions
consisted of Hot Master PCR mix (Quantabio, Beverly, MA, USA), 0.2 mM
of each primer, 10–100 ng template, and reaction conditions were 3 min
at 95 °C, followed by 35 cycles of 45 s at 95 °C, 60 s at 50 °C and 90 s at
72 °C on a Biorad thermocycler. PCRs products were quantified using
Quant-iT PicoGreen dsDNA assay on a BIOTEK Fluorescence Spectropho-
tometer and a master DNA pool was generated from the purified products
in equimolar ratios. The obtained pool was purified with Ampure magnetic
purification beads (Agencourt, Brea, CA, USA), and visualized by gel elec-
trophoresis and then sequenced using an Illumina MiSeq sequencer
(paired-end reads, 2 × 250 bp) at the Genom'IC plateform from Cochin In-
stitute.

2.10. 16S rRNA gene sequence analysis

16S rRNA sequences were analyzed with QIIME2 – version 2019 360
(Bolyen et al., 2019). Sequences were demultiplexed and quality-filtered
with the Dada2method (Callahan et al., 2016).We usedQIIME2default pa-
rameters to detect and correct Illumina amplicon sequence data, and a table
of Qiime 2 artifacts was generated. Next, a tree was generated with the
align-to-tree-mafft-fasttree command, for analyzing phylogenetic diversity.
Then, alpha and beta diversity analyses were computed with the core-
metrics-phylogenetic command. We constructed principal coordinates
analysis (PCoA) plots to assess the variation between experimental groups
(beta diversity). To analyze the taxonomy, we assigned features to opera-
tional taxonomic units, according to a 99 % threshold of pairwise identity
to the Greengenes reference database 13_8. Unprocessed sequencing data
4

are deposited in the European Nucleotide Archive under accession number
PRJEB54776, publicly accessible at https://www.ebi.ac.uk/ena/browser/
view/PRJEB54776.

2.11. Statistical analysis

Gene expressionmeasurement by qPCR and sphingolipid quantification
data were log2 transformed and analyzed using R (http://www.r-project.
org). If a significant difference (p < 0.05) was detected by ANOVA, Welch
test were conducted to compare the groups means. Benjamini-Hochberg
correction was applied over all variates for each comparison. An adjusted
p.value < 0.05 was considered significant.

Hierarchical clustering of microarray gene expression data was per-
formed with the R packages, Geneplotter and Marray (https://www.
bioconductor.org/). We used Ward's algorithm, modified by Murtagh and
Legendre, as the clustering method. Comparisons were performed with
ANOVAs. All data represented on heat maps had p-values < 0.05 for one
or more comparisons.

Statistical analyses of microbiota data, lipid quantification, phenotypi-
cal and biochemistry data were performed with GraphPad Prism for Win-
dows (GraphPad Prism 7.03). When one-way or two-way ANOVAs found
statistically significant differences, they were followed by the appropriate
posthoc test (Tukey). Comparisons between two groups were performed
with the student's t-test. P-values < 0.05 were considered significant.

3. Results

3.1. FB1 exposure attenuates the effect of HFD feeding on body weight and
fasting glycemia

Eight-week-old C57BL/6Jmalemicewere either fed a low-fat chowdiet
(10 % fat, CHOW) or a HFD (60 % fat) ad libitum for 15 weeks. At the be-
ginning of the experiment, the four groups of mice were homogeneous in
terms of weight. The two groups of mice fed the HFD became overweight
within 12 weeks and gained an average of 2 g body weight (bw) per
week per mouse (Fig. S1A). During the same time period, the two groups
of mice fed the CHOW diet only gained 0.33 g body weight (bw) per
week per mouse for a total of 4 g of body weight increase per mouse within
the 12 weeks (Fig. 1A). HFD-fed mice gained significantly more weight,
starting from the second week of HFD feeding (Fig. 1A). The difference in
body weight continued until the 12th week, when half the mice in each
group were exposed to FB1. Thus, during the last three weeks, FB1
(10 mg/kg bw/day) was only added to the drinking water of FB1-exposed
groups. From the 12th week to the end of the experiment, FB1 exposure
did not affect the weight of CHOW-fed mice, but it induced significant
weight loss in HFD-fed mice (around 5 g per mouse; Figs. 1A and S1B).
An evaluation of the food consumed during the last 3 weeks revealed a sig-
nificant reduction in daily quantity of food intake associated with the HFD
in mice exposed to FB1 (but not in the energy intake that significantly in-
crease – Fig. S1C), but FB1 did not significantly influence feeding in
CHOW-fedmice (Fig. 1B). In the sameperiod, water consumption increased
in mice exposed to FB1 under the CHOW diet, but not in mice under the
HFD (Fig. 1C). We checked water consumption to monitor the FB1-
exposure level during the experiment and found that exposure to FB1was
similar in both dietary groups (HFD = 10.5 ± 0.2 mg/kg bw/day vs.
CHOW= 10.7 ± 0.6 mg/kg bw/day; Fig. 1D).

In response to HFD feeding, we observed significant increases in the
levels of fasting blood glucose and blood insulin (respectively Fig. 1E,F).
However, FB1-exposed mice under the HFD had significantly lower fasting
blood glucose levels than the unexposed HFD-fed mice (Fig. 1E).

Finally, since HFD diet may influence intestinal permeability
(Nakanishi et al., 2021), we evaluated plasma FB1 levels to determine
whether the HFD modulated the oral bioavailability of FB1 (Fig. 1G). A
comparison between FB1-exposed mice fed CHOW or HFD showed that
the HFD increased the FB1 plasma level by 4.5-fold, from 1.54 ±
0.2 ng/ml to 6.92 ± 0.8 ng/ml. Taken together, these results demonstrate
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Fig. 1. FB1 exposure reverses the effect of HFD on body weight and fasting glucose.
(A) Mean body weight measured weekly during the study period. (B) Average food
intake during the 3 weeks of FB1 exposure. (C) Average water intake during the
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that HFD-induced obesity and hyperglycemia blood level were partially re-
versed by FB1 exposure. This FB1 effect observed in obese mice was corre-
lated with an increase plasma concentration of FB1.

3.2. HFD feeding and FB1 exposure influence gut microbiota composition

Next,we investigatedwhether FB1 effects on obesity and glycemiawere
related to altered gut homeostasis. We analyzed the effects of both HFD
feeding and FB1 exposure on cecal microbial structure through V3-V4
5

hypervariable regions in 16S rRNA high throughput sequencing. Under a
CHOW diet, FB1 exposure did not impacted intestinal microbiota alpha di-
versity while, as expected, HFD was associated with significant decrease in
alpha diversity, as assessed by both the Shannon and Simpson index
(Fig. 2A). Importantly, in HFD-fed mice exposed to FB1, alpha diversity
was restored to levels similar to those observed in CHOW-fedmice, suggest-
ing an impact of bothHFD and FB1 in regulating intestinal microbiota com-
position. In order to investigate which phyla were impacted byHFD and/or
FB1, we next explored the relative frequencies of taxa at the phylum level
(Fig. 2B). HFD feeding significantly decreased the relative frequency of
Firmicutes and Actinobacteria and increased the relative frequency of
Proteobacteria. In CHOW-fed mice, FB1 did not significantly change the
Proteobacteria frequency, but the Actinobacteria and the Firmicutes fre-
quencies were significantly reduced, while the Verrucomicrobia frequency
was significantly increased, compared to the frequencies observed in unex-
posed CHOW-fed mice. In HFD-fed mice, FB1 exposure had little or no sig-
nificant effects on the relative frequencies of Actinobacteria and Firmicutes.
Nevertheless, these results showed that FB1 did not have either synergistic
or cumulative effects. For Proteobacteria, the HFD combined with FB1 ex-
posure attenuated the increased relative frequency observed with the
HFD alone. However, FB1 induced an increase in the frequency of the
Verrucomicrobia phylum in HFD-fed mice.

Beta diversity was next evaluated using the Bray-Curtis and unweighted
unifrac dissimilarity indexes (Fig. 2C–E). Both PCoA plots showed that HFD
feeding was the main factor driving differences in gut microbiota composi-
tion, with a clear separation along the 1st PCoA axis (Fig. 2D–E). The Bray-
Curtis PCoA plot illustrates a significant effect of FB1 in both CHOW- and
HFD-fed mice. In the unweighted unifrac PCoA, the FB1-CHOW and the
CTRL-CHOW groups were merged, while significant distinct clustering
was observed between FB1-HFD and CTRL-HFD groups (Fig. 2E), suggest-
ing a stronger impact of FB1 in HFD-fed mice on low abundant ASVs.
These findings were confirmed by investigation of the distances separating
individual animals within or between groups (Fig. 2C). The bray-curtis dis-
tance between the FB1- and CTRL-treated animals fed a CHOWdietwas sig-
nificantly lower than the distance between the FB1- and CTRL-treated
animals fed a HFD diet, while the opposite pattern was observed using
the unweighted unifrac distance (Fig. 2D). This indicates that FB1 effects
on the gut microbiota seem to depend on the animal diet, with FB1
impacting mostly low abundant bacteria upon HFD feeding.

Finally, we conducted association analysis betweenmicrobial ASVs and
experimental groups using general linear models (Fig. 2F–H). Upon CHOW
diet, we found 14 ASVs significantly more abundant, and 16 ASVs signifi-
cantly less abundant in FB1-treated vs. CTRL mice; while upon HFD diet,
29 ASVs were significantly more abundant, and 16 ASVs significantly less
abundant, in FB1-treated vs. CTRLmice. Surprisingly, only 2 ASVswere sig-
nificantly impacted by FB1 under both dietary regimen (Fig. 2F). Adjusted
q-value-based hierarchical clustering of these significant OTUs further illus-
trates this diet-dependent impact of FB1 on gut microbiota, with the ASVs
clearly clustering into 5 different clusters (Fig. 2G). Among those, ASVs be-
longing to clusters 1 and 5, illustrate a clear FB1*diet interaction, with FB1
impacting ASVs relative abundance only in HFD-fed mice (Fig. 2H).

Taken together, these results demonstrate that HFD was the first modi-
fying factor of gut microbiota ecological balance, while FB1 impacted gut
microbiota more profoundly upon HFD- than upon CHOW diet, suggesting
an interaction between HFD and FB1 on the intestinal microbiota composi-
tion.

3.3. FB1 reverses HFD-induced hepatic steatosis, but promotes liver inflamma-
tion

Next, we performed histological analyses of the liver to assess the effects
of HFD feeding and FB1 exposure on liver physiology and homeostasis
(Fig. 3A). Histological H&E staining showed that HFD feeding induced ste-
atosis. In CHOW-fedmice, FB1 exposure did not induce any detectablemor-
phological differences from unexposed samples. However, in the HFD
group, FB1 exposure induced a marked reduction in steatosis compared



Fig. 2. FB1 effects on gut microbiota composition.
The cecal microbial composition of samples was analyzed by sequencing 16S rRNA genes. (A) Alpha diversity was assessed by calculating the Shannon and Simpson indexes.
(B) Relative frequencies of taxa at the phylum level. (C) Beta diversity was assessed with the Bray-Curtis and unweighted unifrac dissimilarity indexes and distances between
individuals within and between groups were compared. (D) PCoA plot of beta-diversity using the Bray Curtis index. (E) PCoA plot of beta-diversity using the unweighted
unifrac index. (F) General linear models were fitted to find OTUs significantly different between the experimental groups. Venn diagram representing the number of
significant OTUs higher (red) or lower (blue) in FB1- vs. CTRL groups. (G) Hierarchical clustering of the OTUs significantly different between FB1 and CTRL mice in
either CHOW- or HFD-fed mice. (H) Relative abundance of one representative OTU from each cluster. Data are presented as the mean ± SEM (n = 12/group). #diet
effect, *treatment effect; * or # p-value < 0.05, ** or ## p-value<0.01, *** or ### p-value < 0.001; FB1: Fumonisin B1; CTRL: not exposed to FB1; PCoA: principle
coordinates analysis.
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to the unexposed group. These results were associatedwith a significant de-
crease in liver weight (Fig. 3B), steatosis scores (Fig. 3C), hepatic triglycer-
ides (Fig. 3D) and in somemRNA relative gene expression corresponding to
lipogenesis (Fig. S2A). Additionally, both hepatic free-cholesterol and ester-
ified cholesterol were increased in the HFD group compared to the CHOW
group, but FB1 exposure did not significantly affect these HFD effects
(Fig. 3E and F).

Furthermore, H&E staining revealed that liver sections from mice fed
the HFD and exposed to FB1 had significantly more inflammatory foci
than any of the other mouse groups (Fig. 3A). Liver inflammation was con-
firmed by the inflammatory score (Fig. 3G), and by some relative gene ex-
pression increase associated to inflammatory response such as Tnf and Ccl2
(Fig. 3H,I); but also associated to TLR4 response, inflamasome and fibrosis
(Fig. S2B,C). Although both of these geneswere significantly upregulated in
response to the HFD, only the relative expression Tnf mRNA was signifi-
cantly increased with FB1 exposure, compared to HFD feeding alone
(Fig. 3H,I).

Liver damagewas confirmed by analyzing plasma levels of ALT (Fig. 3J)
and AST (Fig. 3K). Both these enzymeswere elevated inHFD-fedmice com-
pared to CHOW-fedmice. In HFD-fedmice, FB1 exposure caused further el-
evations of ALT and AST. In addition, the plasma ALP and total bilirubin
7

levels were significantly increased when HFD-fed mice were exposed to
FB1 (Fig. 3L,M).

Taken together, these data suggest that the FB1 combined with HFD re-
versed HFD-induced hepatic steatosis, but promoted liver inflammation
and hepatocytolysis.

3.4. Effect of FB1 on hepatic sphingolipid homeostasis

With FB1 being a known ceramide synthase inhibitor, we next investi-
gated FB1-induced alterations in hepatic sphingolipid metabolism in both
CHOW-fed and HFD-fed mice. We measured several sphingolipid species in
the liver, including sphinganine (Sa), sphingosine (So), sphingosine-1-phos-
phate (S1P), ceramides, dihydroceramides, and sphingomyelins (Fig. 4).

As expected, under the CHOW diet, FB1 exposure induced significant
increases in the hepatic levels of sphingoid bases and of the Sa/So ratio
(3-fold increase, Fig. 4A–C). These sphingoids are well-known biomarkers
for FB1 effects (Fig. 4A–C). Moreover, the total hepatic levels of
dihydrosphingomyelins also increased significantly with FB1 exposure
under the CHOW diet (Fig. 4H). Surprisingly, under the CHOW diet, the
level of FB1 exposure applied did not significantly affect the hepatic levels
of S1P, total ceramides, total dihydroceramides, or total sphingomyelins
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(Fig. 4D–G). A closer look at the specific ceramide and sphingomyelin spe-
cies (Fig. 4I, K) showed that the abundances of some were significantly re-
duced, including ceramide(d18:1/16:0), sphingomyelin(d18:1/14:0),
sphingomyelin(d18:1/16:0), sphingomyelin(d18:1/16:1), sphingomyelin
(d18:1/20:1), sphingomyelin(d18:1/22:1), sphingomyelin(d18:1/24:2),
and sphingomyelin(d18:1/24:3). Moreover, under the CHOW diet, FB1 ex-
posure induced significantly higher levels of specific dihydroceramides
(Fig. 4J) and long carbon-chain dihydrosphingomyelins (Fig. 4L).

Under HFD feeding, the basal hepatic levels of ceramides,
dihydroceramides, sphingomyelins, and dihydrosphingomyelins significantly
increased (Fig. 4E–H). Similarly, the levels of sphinganine and sphingosine in-
creased, but the Sa/So ratio remained unchanged (Fig. 4A–C). In contrast, the
level of sphingosine-1-phosphate (S1P) significantly decreased when the sub-
jects were fed a high-fat diet (HFD) (Fig. 4D). Analyzing the specific
ceramides, dihydroceramides, sphingomyelins, and dihydrosphingomyelins
species, we found that HFD feeding caused significant elevations in nearly
all species (Fig. 4I–L).

When the HFD was combined with FB1 exposure, stronger effects were
observed on sphingolipid metabolism. This combined treatment induced a
significant increase in the hepatic sphinganine levels (Fig. 4A) and a reduc-
tion in the hepatic sphingosine levels, to the level observed in unexposed
HFD-fed mice, but not to the level observed in CHOW-fed unexposed
mice (Fig. 4B). These changes in sphingoid base levels resulted in a marked
increase in the Sa/So ratio (20-fold increase), which is characteristic of se-
vere FB1 contamination (Fig. 4C). Moreover, when the HFD was combined
with FB1 exposure, the reduced sphingosine levelwas associatedwith a sig-
nificant increase in the S1P level, to the level observed in unexposed HFD-
fed mice (Fig. 4D). In addition, the HFD combined with FB1 exposure
caused significant reductions in the hepatic levels of ceramide,
dihydroceramides, sphingomyelins, and dihydrosphingomyelins, com-
pared to unexposed HFD-fed mice (Fig. 4E–L). Nevertheless, the total
sphingomyelin level was reduced to a significantly lower level than that ob-
served in unexposed CHOW-fedmice, the total ceramide level was reduced
to the same level as that observed in unexposed CHOW-fedmice. Finally, in
HFD-fed mice exposed to FB1, the dihydroceramide and
dihydrosphingomyelin levels remained significantly higher than the levels
observed in unexposed CHOW-fed mice.

Taken together, these results suggest that HFD-induced liver steatosis
enhance FB1 effect on sphingolipid metabolism inhibiting more efficiently
ceramide synthase. Surprisingly, under HFD-induced obesity FB1 seems to
enhance sphingosine-kinase activity. Indeed, relative gene expression of
SphK1 increases significantly under combined exposure of HFD and FB1
(Fig. S3A). Associated to this increase, both dihydro-sphingosine-1-phos-
phate and sphingosine-1-phosphate increase significantly in liver of HFD-
fed mice exposed to FB1 compared to none exposed HFD-fed mice
(Fig. S3B). Moreover, in HFD-induced obesity, FB1 also seems to prevent
glycosphingolipid recycling decreasing the level of both glucosyl-
ceramides, lactosyl-ceramides, GM3 and GB3 (Fig. S3C–D).

3.5. Effect of FB1 on the hepatic metabolome

These severe metabolic effects on sphingolipids led us to explore the
global metabolomic profile of the liver with an untargeted approach.

To investigate the effect of FB1 on hepatic metabolism, we performed 1H
NMR-based metabolic profiling on liver tissues. We generated O-PLS-DA
plots derived from 1HNMR spectra of aqueous hepatic extracts and compared
the effects of FB1 exposure on the liver metabolic profile under either CHOW
or HFD feeding. No significant effects of FB1 exposure on the profiles of
CHOW-fed mice were observed (Fig. 5A). However, FB1 exposure left a
clear, significant metabolic fingerprint in HFD-fed mice (Fig. 5B). The coeffi-
cient plot derived from theO-PLS-DAmodel for HFD-fedmice highlighted dif-
ferences in the levels of particular metabolites associated with FB1-exposure
(Fig. 5C). For example, FB1 exposure specifically impacted the 1HNMRchem-
ical shift signals of bile acids, glutamate, succinate, aspartate, dimethylamine,
tauro-conjugated bile acids, choline, glycerophosphocholine (GPC), fumarate,
tyrosine, and uridine.
9

The areas under the curves of the 1H NMR spectra were integrated for
metabolites that were significantly correlated with the predictive compo-
nent (R2 > 0.5). Univariate statistics (1-way ANOVA + Sidak's post-tests)
confirmed significant increases in the levels of metabolites involved in cho-
line metabolism (choline and glycerophosphocholine); the tricarboxylic
acid cycle (fumarate, succinate, aspartate, and glutamate); biliary acid
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metabolism (mixed bile acids and tauro-conjugated bile acids); intestinal
microbiota dysbiosis (dimethylamine and tyrosine), and uridine metabo-
lism (Fig. 5D–N). These metabolic profile analyses confirmed that obesity
induced by HFD feeding significantly influenced the effect of FB1 exposure
on liver metabolism in vivo.

3.6. Effect of FB1 exposure on liver gene expression

We next performed an unbiased microarray analysis of liver gene ex-
pression to identify biological processes that were sensitive to FB1 exposure
under both CHOW and HFD feeding. A principal component analysis (PCA)
of the transcriptome showed a clear separation between CHOW-fed and
HFD-fed groups (Fig. 6A). The separation observed along the second axis
accounted for 13.6 % of the variance. Upon CHOW-fed, the unexposed
and FB1 exposed groups overlapped. In contrast, the unexposed and FB1 ex-
posedHFD-fed groupswere clearly separated. The separation along thefirst
axis accounted for 56.3 % of the variance.

Volcano plots of the FB1 effect upon CHOW-fed or HFD-fed mice con-
firmed the stronger genomic response to FB1 exposure with HFD feeding
(Fig. 6B). Indeed, only 77 genes showed significantlymodulated expression
with FB1 exposure under the CHOW diet. In contrast, with the HFD, 9214
hepatic genes were differentially expressed in response to FB1 exposure
(Fig. 6C).

We then performed hierarchical clustering to analyze the differentially
expressed genes (thosewith adjusted p-values< 0.05), which corresponded
to 11,920 probes (Fig. 6D). Along the horizontal axis, the blind clustering of
profiles did not discriminate between FB1 exposed and unexposed mice
under the CHOW diet. Conversely, HFD feeding induced marked clustering
that discriminated clearly between unexposed mice and FB1 exposed mice.
An analysis of the gene clustering revealed 6major genetic groups along the
vertical axis of the heatmap (Fig. 6D). Of these, four clusters were related to
genes with similar expression levels in FB1-exposed mice under the CHOW
diet but differentially expressed genes in FB1-exposedmice underHFD diet.

Expression of genes from clusters 1 and 2 was reduced upon FB1 expo-
sure in HFD-fed mice. These genes were related to energy metabolism. In
the first cluster, 668 genes showed an important increase in mRNA expres-
sion under the HFD compared to the CHOW diet. However, when the HFD
group was exposed to FB1, mRNA expression was similar to the levels ob-
served under the CHOW diet, with or without exposure to FB1. Moreover,
the gene ontology enrichment analysis of this set of genes (Fig. 6E) revealed
that the biological processes most significantly associated with this cluster
were related to fatty acid beta-oxidation, very long-chain fatty acid metab-
olism, and the tricarboxylic acid cycle. Furthermore, characterization of the
most significantly affected genes in cluster 1 (Fig. 6E) showed that, under
HFD feeding, FB1 exposure essentially limited increases in the expression
of genes involved in triglyceride storage, such as Cidea, Fitm1, Plin4, Vldlr,
and Elovl5. In contrast, the 693 genes in cluster 2 showed an important re-
duction in mRNA expression under HFD feeding with FB1 exposure, com-
pared to the CHOW-fed, unexposed group. Moreover, under HFD-feeding
alone, mRNA expression was similar to the levels observed under the
CHOWdiet, with orwithout FB1 exposure. Similar to cluster 1, the gene on-
tology enrichment analysis of this set of genes (Fig. 6E) revealed that the bi-
ological processes most significantly associated with cluster 2 were:
triglyceride metabolism, the tricarboxylic acid cycle, very long-chain fatty
acid metabolism, carbohydrate catabolism, and steroid biosynthesis. Fur-
thermore, characterization of the most significantly affected genes in clus-
ter 2 (Fig. 6E) showed that, under HFD feeding, FB1 exposure reduced
expression of genes involved in fatty acid metabolism, such as: Elovl3 (in-
volved in very long-chain fatty acid elongation from C18:0 to provide pre-
cursors for sphingolipid synthesis); Acacb and Pdk1 (involved in fatty acid
uptake and oxidation in mitochondria); and Thrsp (involved in lipid
storage).

Clusters 4 and 5 included genes involved in cell cycle metabolism and
organization. Indeed, the expression levels of the 1782 genes in cluster 4
were slightly decreased under the HFD, compared to the CHOWdiet. How-
ever, a moderate increase in mRNA expression was observed with the HFD
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and FB1 exposure, compared to the CHOW diet with FB1 exposure. More-
over, the gene ontology enrichment analysis (Fig. 6E) revealed that the bi-
ological processes most significantly associated with cluster 4 were
translation, chromatin organization, and RNA splicing. Furthermore, char-
acterization of the most significantly affected genes in cluster 4 (Fig. 6E)
showed that, under HFD feeding, FB1 exposure reversed and slightly in-
creased the expression of genes involved in cell proliferation (Tgm1,
Eppk1) and cell junction organization (Marveld2, Cdh1). In cluster 5, the ex-
pression of 5189 genes significantly increased with the HFD and evenmore
upon FB1 exposure, compared to the CHOW groups, without or with FB1
exposure. This effect indicated synergy between FB1 exposure and the
HFD. The gene ontology enrichment analysis (Fig. 6E) revealed that the bi-
ological processes most significantly associated with cluster 5 were the mi-
totic cell cycle, extracellularmatrix organization, RNA splicing, DNA repair,
immune system processes, chromatin organization, and cell death. Further-
more, characterization of the most significantly affected genes in cluster 5
(Fig. 6E) showed that, under HFD feeding, FB1 exposure significantly am-
plified the expression of genes involved in cell cycle regulation (Plk1,
Prc1, Ube2c, Cdc20, Ccnb1, Cenpf, Cenpe) and cytoskeleton organization
(Ckap2, Kif20a, Nusap1, Anln).

At last, clusters 3 and 6 exhibited significant modulations with diet, in-
dependent of FB1 exposure. Indeed, in cluster 3, the expression levels of
889 genes associated with steroid biosynthesis or triglyceride metabolism
decreased significantly under HFD feeding. In contrast, in cluster 6, the ex-
pression levels of 2699 genes associated with Golgi vesicle transport in-
creased under the HFD.

4. Discussion

Environmental exposure to natural toxicants or chemical residues,
alone or inmixtures, are frequently associated with the risk of chronic met-
abolic diseases (Grün and Blumberg, 2006). Moreover, the increasing prev-
alence of obesity (Estes et al., 2018), increases the risk of various diseases,
including liver injuries. Several studies previously reported that toxicants,
like triclosan (Yueh et al., 2020), 2,3,7,8-tetrachlorodibenzo-p-dioxin
(Duval et al., 2017), chlorpyrifos (Wang et al., 2021), or methyl tert-butyl
ether (Tang et al., 2019) contributed to the progression of obesity-
associated liver steatosis. Thosefindings led us to hypothesize that environ-
mental toxins may differentially impact liver homeostasis, depending on
the presence of obesity. Among the natural food contaminants, some of
the most prevalent and harmful mycotoxins are known to induce liver tox-
icity, such as aflatoxin B1 (Fan et al., 2021; Hua et al., 2021; Torres et al.,
2020), T-2 toxin (Janik et al., 2021), deoxynivalenol (Hasuda et al.,
2022), ochratoxin A (Tao et al., 2018), zearalenone (Wang et al., 2019),
and FB1 (Wangia-Dixon and Nishimwe, 2021).

It is well-established that FB1 affects the gut-liver axis and liver metab-
olism (Terciolo et al., 2019; Régnier et al., 2017). Indeed, previous litera-
ture has described that exposure to oral FB1 disturbs extracellular matrix
organization, immune response processes, and lipid homeostasis in both
the intestine and liver (Devriendt et al., 2009; Dopavogui et al., 2022).
Therefore, we tested the toxic effects of FB1 exposure in mice with diet-
induced obesity. First, as expected, we showed that HFD feeding induced
obesity, increased fasting glycemia, and hepatic steatosis (Régnier et al.,
2020; Tamura and Shimomura, 2005). Second, we confirmed the known ef-
fect of FB1 exposure on sphingolipid homeostasis, which resulted in an in-
crease in the Sa/So ratio (Régnier et al., 2019a, b; Loiseau et al., 2015).
Although under HFD diet these effects are marked, the choice of murine
species (C57BL6J), gender (male) and dose of FB1 revealed a very limited
effect of this toxin at the hepatic level under standard diet: only a small in-
crease of Sa/So ratio with an increase of both types of sphingoid bases, a
single decrease of ceramide (d18:1; C16:0) and of an accumulation of
d18:0 saturated dihydroceramides from C18:0 to C24:0. Similarly under
CHOW diet only 77 genes were significantly modulated compared to over
9214 genes under the HFD diet. Then, we observed that HFD-induced obe-
sity followed by 3 weeks of co-exposure to an HFD and FB1 resulted in gut
dysbiosis, increased plasma FB1 levels, and reductions in bodyweight, liver
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weight, fasting blood glucose, and triglyceride levels. However, several
plasma markers of liver injury (ALT, AST, ALP, and bilirubin) were signifi-
cantly increased, which indicated severe hepatitis. Finally, unbiased analy-
ses of the liver metabolome and transcriptome produced results consistent
with the notion that FB1 exposure had a potent effect on liver metabolism,
which is additive to the effects of diet-induced obesity.

Several lines of evidence have suggested that environmental toxicants
may influence obesity and NAFLD (Rajak et al., 2021). However, most pre-
clinical studies supporting this hypothesis were co-exposure studies. In con-
trast, the present study took an original approach by exposing mice to FB1
after they became obese and hyperglycemic on the HFD. We monitored
body weight and water intake to ensure that chow-fed and HFD-fed mice
were exposed to a similar dose of FB1 relative to body weight. Thus, with
similar FB1 dosing, normal and obese mice showed different systemic and
hepatic responses to FB1. However, the plasma FB1 levels were different
in CHOW and HFD groups. This result might be due to either increased
FB1 absorption or reduced FB1 clearance in the HFD-fed mice.

This study had some limitations. First, our study design did not allowus to
determine themechanismbywhichHFDexposure induces the increase in cir-
culating plasma level of FB1. The HFD might have changed the gut physiol-
ogy, altered the microbiota composition and/or activity (Rohr et al., 2020;
Mouries et al., 2019), or suppressed FB1 detoxication; indeed, both obesity
and hepatic steatosis are known to hamper detoxification processes in the
gut and liver (Cobbina and Akhlaghi, 2017; Sharpton et al., 2019). Another
limitation of the study was that we administered a high dose of FB1, which
was hundred times above the BMDL10 of 0.1 mg/kg bw per day calculated
by the CONTAM Panel from EFSA and derived for induction of megalocytic
hepatocytes in specific p53± mice (Bondy et al., 2012; Knutsen et al.,
2018a). Thus, one might question the potential relevance of the findings to
animal and human populations (Terciolo et al., 2019). However, rodents
are known to be particularly resistant to FB1 toxicity; indeed, in our study
very few biological markers have been modulated in rodents under a regular
CHOWdiet. Only 77 genes were significantly modulated. Moreover, whereas
usually FB1 exposure induces a strong decrease in all ceramide and
dihydroceramide species and an increase in the Sa/So ratio due to Sa accumu-
lation and So depletion, here, within the FB1 dose studied, we observed only
earlier effects of FB1with a small increase in the Sa/So ratio with an increase
in both types of sphingoid bases, a single decrease in ceramides (d18: 1;
C16:0) and an accumulation of saturated dihydroceramides (d18:0) from
C18:0 to C24:0. Nevertheless, the altered effects of HFD feeding and FB1 ex-
posure observed in this study provided further evidence that obesity could
weaken the host's ability to copewith food toxins, and revealed novel insights
on the hepatic toxicity of FB1.

In obesity, the liver is exposed to increase in both endotoxin levels and
metabolic stress. Both these factors promote NAFLD, which ranges in sever-
ity, from steatosis to steatohepatitis, cirrhosis, and cancer (Ferro et al.,
2020; Todoric et al., 2020; Loo et al., 2017; Kübeck et al., 2016). Based
on our histological analyses and our targeted assays on liver composition
and function, we concluded that FB1 reduced the steatosis and neutral
lipid deposition induced by HFD feeding. These effects were associated
with reductions in body weight and hyperglycemia, which suggested that
FB1 could reduce obesity and diabetes, which in turn, might have contrib-
uted to reducing hepatic lipid accumulation (Meikle and Summers, 2017;
Holland and Summers, 2008). Our monitoring of food intake showed that
whereas a lack of significant changes in food intake only applies to
CHOW mice; a significant reduction was seen with HFD mice, both HFD
alone and HFD+ FB1. Nevertheless, considering the monitoring of calory
intake, only a significant increase of calory intake has been shown for the
HFD alone fed. This result suggested that FB1 affected calory absorption
and/or expenditure. However, this hypothesis warrants future study, be-
cause it is beyond the direct effects of FB1 on hepatic homeostasis. Al-
though FB1 exposure reduced steatosis in HFD-fed mice, it also
significantly induced liver inflammation, damage, and dysfunction. Indeed,
FB1-induced hepatitis was much more severe in HFD-fed mice than in
CHOW-fed mice, and it was associated with a massive shift in liver metab-
olism and gene expression.
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It remains unclear whether all of these HFD-exacerbated signs of FB1
toxicity were related to FB1 inhibition of sphingolipid synthesis or whether
it involvedmultiple organ cross-talk between gut, liver and adipose tissues.
In mice fed a standard diet and exposed to FB1, inhibition of ceramide syn-
thase activity leads to reduced dihydroceramide, ceramide, and
sphingomyelin levels. Concurrently, the inhibition of de novo sphingolipid
biosynthesis causes an accumulation of dihydrosphingosine and sphingo-
sine, with no significant effect on S1P or dihydrosphingosine-1-phosphate.
However, in HFD-fed mice exposed to FB1, the initial state of the
sphingolipidome before FB1 exposure influences the results. HFD-fed
mice display a general increase in sphingolipids content, including
ceramides, sphingomyelins, dihydroceramides, glycosphingolipids, but
also sphingosine, and dihydrosphingosine. S1P significantly decreases in
HFD-fed mice. However, FB1 exposure increases S1P level in HFD-fed
mice. Recent findings showed that S1P plays an antidiabetic role by
counteracting excessive inflammation and maintaining metabolic homeo-
stasis (Chakrabarty et al., 2022). Therefore, the effect of FB1 on S1P level
in HFD fedmice may contribute to some of the metabolic effects of FB1 ob-
served upon HFD feeding.

As expected, FB1 exposure in HFD-induced obese mice results in a de-
crease in dihydroceramides, ceramides, and sphingomyelins, and an accu-
mulation of sphinganine. More surprisingly, FB1 causes a decrease in
hepatic sphingosine and glycosphingolipid content and an accumulation
of S1P and dihydrosphingosine-1-phosphate. These results suggest that
FB1 exacerbates sphingoid base phosphorylation and significantly disrupts
the sphingolipid salvage pathway in HFD-induced obese mice, potentially
by disrupting the endolysosomal trafficking pathway. Sphingolipids, such
as ceramides, are bioactive lipids that drive the progression of steatosis
(Hannun andObeid, 2018; Choi and Snider, 2015; Xia et al., 2015). Indeed,
several studies have identified correlations between dihydroceramides and
different measures of NAFLD in humans (Ooi et al., 2021; Vvedenskaya
et al., 2021). Additionally, various preclinical studies in rodents have dem-
onstrated that ceramides and dihydroceramides are necessary for NAFLD
development (Poss and Summers, 2020; Chaurasia et al., 2016; Régnier
et al., 2019a, b). Therefore, the effects of FB1 that we observed on steatosis
were consistent with an inhibition of the steatogenic role of ceramides
(Chaurasia et al., 2019; Holland and Summers, 2008). Furthermore, the ef-
fects of FB1 on liver damage and inflammation were consistent with an in-
hibition of the well-known pro-inflammatory and pro-apoptotic effects of
sphingolipid species respectively such as S1P, dihydrosphingosine-1-phos-
phate and sphingoïd bases (Molino et al., 2017; Riley et al., 2001). There-
fore, the pro-inflammatory effects of FB1 observed in HFD-fed mice might
have occurred as an indirect consequence of altered ceramide homeostasis
(Chen et al., 2021).

5. Conclusion

To our knowledge, the present study was the first to assess the effects of
diet-induced obesity on FB1 toxicity. This work established that, in the con-
text of obesity, FB1 exposure exhibited enhanced gut dysbiosis, systemic
and hepatotoxic effects. Although FB1 exposure in diet-induced obese
mice led to significant reductions in body weight, glycemia, and hepatic
lipid content, it also induced liver inflammation and increases in various
markers of hepatotoxicity. Therefore, our findings suggest that diet-
induced obesity may increase the sensitivity to environmental toxins.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.164436.
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