859 research outputs found

    Pegylation of poly(Îł-benzyl-L-glutamate) nanoparticles is efficient for avoiding mononuclear phagocyte system capture in rats

    Get PDF
    Poly(γ-benzyl-L-glutamate) (PBLG) derivatives are synthetic polypeptides for preparing nanoparticles with well controlled surface properties. The aim of this paper was to investigate the biodistribution of pegylated PBLG in rats. For this purpose, nanoparticles were prepared by a nanoprecipitation method using mixtures of different PBLG derivates, including a pegylated derivate to avoid mononuclear phagocyte system uptake. The morphology, size distribution, and surface charge of the nanoparticles were investigated as a function of the amount of polymer employed for the preparation. Moderately polydispersed nanoparticles (polydispersity index less than 0.2) were obtained. Their size increased with polymer concentration. The zeta potential values were negative whatever the formulations. The availability of polyethylene glycol chains on the nanoparticles’ surface was confirmed by measuring the decrease in bovine serum albumin adsorption. For in vivo distribution studies, pegylated and nonpegylated nanoparticles were prepared with polymer mixtures containing PBLG-fluorescein isothiocyanate and imaged by fluorescence microscopy to measure their accumulation in liver and spleen tissues of rats after intravenous administration. Injection of stealth formulations resulted in negligible fluorescence in liver and spleen compared with nonpegylated formulations, which suggests that these nanoparticles are promising candidates as a stealth-type long-circulating drug carrier system and could be useful for active targeting of drugs while reducing systemic side effects

    Questions Posed by the Use of Genetic Information for Personalized Medicine Achievements and Promises

    Get PDF
    Personalised medicine (PM) has the potential to increase therapeutic effectiveness, reduce side effects and lower cost. The identification of biomarkers predictive of the clinical response to specific treatments in subsets of patients became reality for a variety of diseases. However, a better understanding of the benefits and limitations needs to be developed at the level of the general public as well as at the level of an individual patient. The upcoming ability to characterize each patient from the genetic point of view in a comprehensive manner is believed to have the potential to transform medicine, thus enabling accurate prognosis as well as a treatment outcome prediction. However, PM holds both promise and cause for concern. Although PM promises that an individual’s genetic information may be increasingly used to prioritize medical decision making, it raises in parallel fears and questions as to whether such use could be inequitable. Thus, there are many thoughts whether the use of individual genetic information in the delivery of health care can be a cause for concern, as it may lead to genetic discrimination and other problems such as with employers and private insurance companies. Finally, the main pitfall of predictive tests for complex disease remains the putative lack of proven medical benefit. A better understanding of the benefits PM will have to be developed at the level of the general public as well as at the level of an individual patient; which will also reassure people that their genetic data is used appropriately to choose therapeutic protocols and drugs

    A study of environmental characterization of conventional and advanced aluminum alloys for selection and design. Phase 2: The breaking load test method

    Get PDF
    A technique is demonstrated for accelerated stress corrosion testing of high strength aluminum alloys. The method offers better precision and shorter exposure times than traditional pass fail procedures. The approach uses data from tension tests performed on replicate groups of smooth specimens after various lengths of exposure to static stress. The breaking strength measures degradation in the test specimen load carrying ability due to the environmental attack. Analysis of breaking load data by extreme value statistics enables the calculation of survival probabilities and a statistically defined threshold stress applicable to the specific test conditions. A fracture mechanics model is given which quantifies depth of attack in the stress corroded specimen by an effective flaw size calculated from the breaking stress and the material strength and fracture toughness properties. Comparisons are made with experimental results from three tempers of 7075 alloy plate tested by the breaking load method and by traditional tests of statistically loaded smooth tension bars and conventional precracked specimens

    Combining Technical and Financial Impacts for Countermeasure Selection

    Full text link
    Research in information security has generally focused on providing a comprehensive interpretation of threats, vulnerabilities, and attacks, in particular to evaluate their danger and prioritize responses accordingly. Most of the current approaches propose advanced techniques to detect intrusions and complex attacks but few of these approaches propose well defined methodologies to react against a given attack. In this paper, we propose a novel and systematic method to select security countermeasures from a pool of candidates, by ranking them based on the technical and financial impact associated to each alternative. The method includes industrial evaluation and simulations of the impact associated to a given security measure which allows to compute the return on response investment for different candidates. A simple case study is proposed at the end of the paper to show the applicability of the model.Comment: In Proceedings AIDP 2014, arXiv:1410.322

    Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions

    Get PDF
    BACKGROUND: Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive. RESULTS: We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC) in peripheral blood mononuclear cells); the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy. CONCLUSION: Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting

    Cyclodextrin-based systems for the stabilization of metallic(0) nanoparticles and their versatile applications in catalysis

    Get PDF
    International audienceIn order to better respond to environmental standards, the development of metal nanoparticles using green approaches has exponentially grown for the last decade. Cyclodextrins, which are cyclic oligosaccharides composed of 6(α), 7(β) or 8(γ) glucopyranose units, have appeared to be interesting candidates for the synthesis of metal nanoparticles. Indeed, through the ability to form inclusion complexes or supramolecular adducts with organic molecules or metal precursors, cyclodextrins can be successfully employed to stabilize size-controlled zerovalent metallic nanoparticles active for hydrogenation reactions carried out in aqueous or gas-phase media. In this summary of our works, we report that cyclodextrins could be used in various forms and environments: (i) in free form, (ii) in complexed form with appropriate guests molecules, (iii) in combination with polymer matrices, (iv) in thermosensitive hydrogels and (v) immobilized onto porous carbons supports. All these studies highlight the fact that cyclodextrins can be seen as multi-task agents for nanocatalysis
    • …
    corecore