192 research outputs found

    Emergence, Function and Realization

    Get PDF
    “Realization” and “emergence” are two concepts that are sometimes used to describe same or similar phenomena in philosophy of mind and the special sciences, where such phenomena involve the synchronic dependence of some higher-level states of affairs on the lower-level ones. According to a popular line of thought, higher-level properties that are invoked in the special sciences are realized by, and/or emergent from, lower-level, broadly physical, properties. So, these two concepts are taken to refer to relations between properties from different levels where the lower-level ones somehow “bring about” the higher-level ones. However, for those who specialise in inter-level relations, there are important differences between these two concepts – especially if emergence is understood as strong emergence. The purpose of this chapter is to highlight these differences

    Mucus and ciliated cells of human lung : splitting strategies for particle methods and 3D stokes flows

    Get PDF
    Lung walls are covered by a film of mucus, whose motility is fundamental for a healthy behavior. Indeed, mucus traps inhaled aerosols (bacteria, dust, ...), and moves from smallest to largest airways, until it reaches esophagus where is it swallowed or expectorated. A lot of biological parameters are responsible for mucus motion [6], such as the vibrations of ciliated cells covering lung walls (cilia height, frequency, ...), mucus/air interaction, water saturation in mucin network, mucus thickness

    Numerical and experimental investigation of mucociliary clearance breakdown in cystic fibrosis

    Get PDF
    The human tracheobronchial tree surface is covered with mucus. A healthy mucus is a heterogeneous material flowing toward the esophagus and a major defense actor against local pathogen proliferation and pollutant deposition. An alteration of mucus or its environment such as in cystic fibrosis dramatically impacts the mucociliary clearance. In the present study, we investigate the mechanical organization and the physics of such mucus in human lungs by means of a joint experimental and numerical work. In particular, we focus on the influence of the shear-thinning mucus mobilized by a ciliated epithelium for mucociliary clearance. The proposed robust numerical method is able to manage variations of more than 5 orders of magnitude in the shear rate and viscosity. It leads to a cartography that allows to discuss major issues on defective mucociliary clearance in cystic fibrosis. Furthermore, the computational rheological analysis based on measurements shows that cystic fibrosis shear-thinning mucus tends to aggregate in regions of lower clearance. Yet, a rarefaction of periciliary fluid has a greater impact than the mucus shear-thinning effects

    Modélisation de solides à nanocristaux de silicium

    Get PDF
    Les propriétés physico-chimiques d'un nanocristal semi-conducteur sphérique, intermédiaires entre la molécule et le solide, dépendent de sa taille. Empilés ou dispersés, ces nanocristaux sont les briques architecturales de nouveaux matériaux fonctionnels aux propriétés ajustables, en particulier pour l optoélectronique. Cette thèse s'inscrit dans le développement de ces nouveaux matériaux et présente avant tout une méthodologie pour la simulation du transport électronique dans un solide à nanocristaux en régime de faible couplage électronique appliquée à des nanocristaux de silicium dans une matrice de SiO2 pour les applications photovoltaïques. La cinétique du déplacement des porteurs est liée au taux de transfert tunnel (hopping) entre nanocristaux. Ces taux sont calculés dans le cadre de la théorie de Marcus et prennent en compte l'interaction électron-phonon dont l'effet du champ de polarisation dans la matrice ainsi que les interactions électrostatiques à courte et longue portée. Le calcul des états électroniques (électrons et trous) en théorie k.p associé à l'utilisation de la formule de Bardeen donne au code la capacité, par rapport à la littérature, de fournir des résultats (mobilité ou courant) en valeur absolue. Les résultats de mobilité ainsi obtenus pour des empilements cubiques idéaux viennent contredire les résultats de la littérature et incitent à considérer d'autres matériaux notamment en ce qui concerne la matrice pour obtenir de meilleurs performances. En outre, les résultats de simulation de dispositifs montrent l'impact considérable des électrodes sur les caractéristiques courant-tension. Aussi, un nouvel algorithme Monte-Carlo Cinétique accéléré a été adapté afin de pouvoir reproduire le désordre inhérent à la méthode de fabrication tout en maintenant un temps de simulation raisonnable. Ainsi l'impact du désordre en taille se révèle faible à température ambiante tandis que les chemins de percolation occultent la contribution des autres chemins de conduction. Des résultats de caractérisation comparés aux simulations tendent par ailleurs à indiquer que ces chemins peuvent concentrer les porteurs et exhiber un phénomène de blocage de coulomb. Enfin, la section efficace d'absorption est calculée théoriquement et permet d'obtenir le taux de génération sous illumination qui se révèle proche du silicium massif. Et une méthode en microscopie à sonde de Kelvin est décrite pour caractériser la durée de vie des porteurs c'est-à-dire le taux de recombinaison, les résultats ainsi obtenus étant cohérents avec d'autres techniques expérimentales.The physicochemical properties of a spherical semiconductor nanocrystal, intermediate between the molecule and the solid depend on its size. Stacked or dispersed, these nanocrystals are building blocks of new functional materials with tunable properties, particularly appealing for optoelectronics. This thesis takes part in the development of these new materials. It mainly presents a methodology for the simulation of electronic transport in nanocrystal solids within the weak electronic coupling regime. It is applied to a material made of silicon nanocrystals embedded in silicon oxide and considered for photovoltaïc applications. The displacement kinetics of charge carriers is related to the tunneling transfer rate (hopping) between nanocrystals. These rates are calculated within the framework of Marcus theory and take into account the electron-phonon interactions, the effect of the bias field and the electron-electron interactions at short and long range. The calculation of electronic states (electrons and holes) in k.p theory associated with the use of Bardeen's formula provides, compared to previous works, results (mobility or current) in absolute terms. The mobility thus computed is far lower than the results of the literature and encourage to consider other materials. Furthermore, the device simulations show the significant impact of the electrodes on the current-voltage characteristics. Also, a new accelerated kinetic Monte-Carlo algorithm has been adapted in order to reproduce the disorder inherent in the manufacturing process while maintaining a reasonable simulation time. Thus the impact of the size disorder is poor at room temperature while the percolation paths shunt the contribution of other conduction paths. Characterization results compared to simulations tend to show that these paths concentrate carriers and exhibit Coulomb blockade phenomenon. Finally, the absorption cross section is calculated theoretically to obtain the generation rate under illumination. It is similar to the bulk silicon one. And a method employing a Kelvin probe microscope is described to characterize the carrier lifetime, namely the recombination rate. The results thus obtained are consistent with other experimental technics.VILLEURBANNE-DOC'INSA-Bib. elec. (692669901) / SudocSudocFranceF

    Viral proteins targeting mitochondria: controlling cell death

    Get PDF
    AbstractMitochondrial membrane permeabilization (MMP) is a critical step regulating apoptosis. Viruses have evolved multiple strategies to modulate apoptosis for their own benefit. Thus, many viruses code for proteins that act on mitochondria and control apoptosis of infected cells. Viral proapoptotic proteins translocate to mitochondrial membranes and induce MMP, which is often accompanied by mitochondrial swelling and fragmentation. From a structural point of view, all the viral proapoptotic proteins discovered so far contain amphipathic α-helices that are necessary for the proapoptotic effects and seem to have pore-forming properties, as it has been shown for Vpr from human immunodeficiency virus-1 (HIV-1) and HBx from hepatitis B virus (HBV). In contrast, antiapoptotic viral proteins (e.g., M11L from myxoma virus, F1L from vaccinia virus and BHRF1 from Epstein–Barr virus) contain mitochondrial targeting sequences (MTS) in their C-terminus that are homologous to tail-anchoring domains. These domains are similar to those present in many proteins of the Bcl-2 family and are responsible for inserting the protein in the outer mitochondrial membrane leaving the N-terminus of the protein facing the cytosol. The antiapoptotic proteins K7 and K15 from avian encephalomyelitis virus (AEV) and viral mitochondria inhibitor of apoptosis (vMIA) from cytomegalovirus are capable of binding host-specific apoptosis-modulatory proteins such as Bax, Bcl-2, activated caspase 3, CAML, CIDE-B and HAX. In conclusion, viruses modulate apoptosis at the mitochondrial level by multiple different strategies

    Transfemoral versus transcarotid access for transcatheter aortic valve

    Get PDF
    Objectives: To compare the outcomes after transcatheter aortic valve replacement (TAVR) through a transfemoral (TF) and transcarotid (TC) access at our institution.Methods: From January 2014 to January 2020, 62 TC-TAVR and 449 TF-TAVR were performed using 2 prosthesis devices (Edwards SAPIEN 3, n = 369; Medtronic Evo-lut R, n = 142). Propensity score matching was used to adjust for imbalance in the baseline characteristics of the study groups.Results: Propensity score matching provided 62 matched pairs with comparable operative risk (mean European System for Cardiac Operative Risk Evaluation II, TC-TAVR 7.6% vs TF-TAVR 6.6%, P = .17). Thirty-day mortality (4.8% vs 3.2%, P = 1.00) and 2-year mortality (11.3% vs 12.9%, P = .64) after TC-TAVR were com-parable with TF-TAVR. Strokes were numerically more frequent after TC-TAVR compared with TF-TAVR (3.2% vs 0%, P = .23), but the difference did not reach statistical significance. TF-TAVR was associated with a significantly greater risk of permanent pacemaker implantation (29.0% vs 12.9%, P = .04) compared with TC-TAVR. Other complications were not frequent and were similarly distributed be-tween the matched groups.Conclusions: TC access for TAVR was associated with satisfactory results compared to the femoral access. TC-TAVR could be considered a valid and safe alternative to TF-TAVR when femoral access is contraindicated. (JTCVS Techniques 2022;15:46-53)Peer reviewe

    Integrating habitat and partial survey data to estimate the regional population of a globally declining seabird species, the sooty shearwater

    Get PDF
    Many animal populations are thought to be in flux due to anthropogenic impacts. However, censusing organisms to understand such changes is often impractical. For example, while it is thought that over half of pelagic seabird populations are declining, most breed in burrows or on cliffs, in large, remote colonies, making them difficult to count. Burrow-nesting sooty shearwaters (Ardenna grisea) are abundant but declining in their core (South Pacific) breeding range, potentially due to introduced rodents and habitat loss. In contrast, Kidney Island, their largest colony in the Falkland Islands (Southwest Atlantic), purportedly grew by several orders of magnitude since the mid-1900s. This island is rodent-free, and native tussac grass (Poa flabellata) has increased following cessation of historical exploitation. To estimate the sooty shearwater population in the Falkland Islands, and its relationship with breeding habitat availability, we sampled burrow density and occupancy on Kidney Island and modeled these as functions of habitat. Both indices responded positively to a proxy for historical increases in tussac cover. We estimate that breeding sooty shearwaters occupy ∼140,000 (95% CI: 90,000–210,000) burrows on Kidney Island. Moreover, using additional survey data and Generalized Functional Response models to account for intra-island variation in habitat availability, we estimate that 25,000 (95% CI: 20,100 - 30,500) burrows could be occupied on nearby islands from which non-native rodents have been recently eradicated. Our study shows that habitat selection functions, generalized where necessary, not only improve population estimates but provide biological insights needed to reverse declines in seabirds and other species

    The Euclid Science Ground Segment Distributed Infrastructure: System Integration and Challenges

    Get PDF
    The Science Ground Segment (SGS) of the Euclid mission provides distributed and redundant data storage and processing, federating nine Science Data Centres (SDCs) and a Science Operations Centre. The SGS reference architecture is based on loosely coupled systems and services, broadly organized into a common infrastructure of transverse software components and the scientific data Processing Functions. The SGS common infrastructure includes: 1) the Euclid Archive System (EAS), a central metadata repository which inventories, indexes and localizes the huge amount of distributed data; 2) a Distributed Storage System of EAS, providing a unified view of the SDCs storage systems and supporting several transfer protocols; 3) an Infrastructure Abstraction Layer, isolating the scientific data processing software from the underlying IT infrastructure and providing a common, lightweight workflow management system; 4) a Common Orchestration System, performing a balanced distribution of data and processing among the SDCs. Virtualization is another key element of the SGS infrastructure. We present the status of the Euclid SGS software infrastructure, the prototypes developed and the continuous system integration and testing performed through the Euclid “SGS Challenges”
    corecore