7,725 research outputs found

    Performance of a New Enhanced Topological Decision-Rule Map-Matching Algorithm for Transportation Applications

    Get PDF
    Indexación: Web of Science; ScieloMap-matching problems arise in numerous transportation-related applications when spatial data is collected using inaccurate GPS technology and integrated with a flawed digital roadway map in a GIS environment. This paper presents a new enhanced post-processing topological decision-rule map-matching algorithm in order to address relevant special cases that occur in the spatial mismatch resolution. The proposed map-matching algorithm includes simple algorithmic improvements: dynamic buffer that varies its size to snap GPS data points to at least one roadway centerline; a comparison between vehicle heading measurements and associated roadway centerline direction; and a new design of the sequence of steps in the algorithm architecture. The original and new versions of the algorithm were tested on different spatial data qualities collected in Canada and United States. Although both versions satisfactorily resolve complex spatial ambiguities, the comparative and statistical analysis indicates that the new algorithm with the simple algorithmic improvements outperformed the original version of the map-matching algorithm.El problema de la ambigüedad espacial ocurre en varias aplicaciones relacionadas con transporte, específicamente cuando existe inexactitud en los datos espaciales capturados con tecnología GPS o cuando son integrados con un mapa digital que posee errores en un ambiente SIG. Este artículo presenta un algoritmo nuevo y mejorado basado en reglas de decisión que es capaz de resolver casos especiales relevantes en modo post-proceso. El algoritmo propuesto incluye las siguientes mejoras algorítmicas: un área de búsqueda dinámica que varía su tamaño para asociar puntos GPS a al menos un eje de calzada, una comparación entre el rumbo del vehículo y la dirección del eje de calzada asignada, y un nuevo diseño de la secuencia de pasos del algoritmo. Tanto el algoritmo original como el propuesto fueron examinados con datos espaciales de diferentes calidades capturados en Canadá y Estados Unidos. Aunque ambas versiones resuelven satisfactoriamente el problema de ambigüedad espacial, el análisis comparativo y estadístico indica que la nueva versión del algoritmo con las mejoras algorítmicas entrega resultados superiores a la versión original del algoritmo.http://ref.scielo.org/9mt55

    Local dynamics for fibered holomorphic transformations

    Full text link
    Fibered holomorphic dynamics are skew-product transformations over an irrational rotation, whose fibers are holomorphic functions. In this paper we study such a dynamics on a neighborhood of an invariant curve. We obtain some results analogous to the results in the non fibered case

    Quark masses without Yukawa hierarchies

    Get PDF
    A model based on the local gauge group SU(3)_c x SU(3)_L x U(1)_X without particles with exotic electric charges is shown to be able to provide the quark mass spectrum and their mixing, by means of universal see-saw mechanisms, avoiding a hierarchy in the Yukawa coupling constants.Comment: 7 pages, 1 eps figure. Published in Europhysics Letter

    Steady-state stabilization due to random delays in maps with self-feedback loops and in globally delayed-coupled maps

    Full text link
    We study the stability of the fixed-point solution of an array of mutually coupled logistic maps, focusing on the influence of the delay times, Ï„ij\tau_{ij}, of the interaction between the iith and jjth maps. Two of us recently reported [Phys. Rev. Lett. {\bf 94}, 134102 (2005)] that if Ï„ij\tau_{ij} are random enough the array synchronizes in a spatially homogeneous steady state. Here we study this behavior by comparing the dynamics of a map of an array of NN delayed-coupled maps with the dynamics of a map with NN self-feedback delayed loops. If NN is sufficiently large, the dynamics of a map of the array is similar to the dynamics of a map with self-feedback loops with the same delay times. Several delayed loops stabilize the fixed point, when the delays are not the same; however, the distribution of delays plays a key role: if the delays are all odd a periodic orbit (and not the fixed point) is stabilized. We present a linear stability analysis and apply some mathematical theorems that explain the numerical results.Comment: 14 pages, 13 figures, important changes (title changed, discussion, figures, and references added

    Hydrostatic Equilibrium of a Perfect Fluid Sphere with Exterior Higher-Dimensional Schwarzschild Spacetime

    Get PDF
    We discuss the question of how the number of dimensions of space and time can influence the equilibrium configurations of stars. We find that dimensionality does increase the effect of mass but not the contribution of the pressure, which is the same in any dimension. In the presence of a (positive) cosmological constant the condition of hydrostatic equilibrium imposes a lower limit on mass and matter density. We show how this limit depends on the number of dimensions and suggest that Λ>0\Lambda > 0 is more effective in 4D than in higher dimensions. We obtain a general limit for the degree of compactification (gravitational potential on the boundary) of perfect fluid stars in DD-dimensions. We argue that the effects of gravity are stronger in 4D than in any other number of dimensions. The generality of the results is also discussed

    Concentration of atomic hydrogen diffused into silicon in the temperature range 900–1300 °C

    Get PDF
    Boron-doped Czochralski silicon samples with [B]~1017 cm−3 have been heated at various temperatures in the range 800–1300 °C in an atmosphere of hydrogen and then quenched. The concentration of [H-B] pairs was measured by infrared localized vibrational mode spectroscopy. It was concluded that the solubility of atomic hydrogen is greater than [Hs] = 5.6 × 1018 exp( − 0.95 eV/kT)cm−3 at the temperatures investigated

    High coercivity induced by mechanical milling in cobalt ferrite powders

    Get PDF
    In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 treated by mechanical milling with different grinding balls. The cobalt ferrite nanoparticles were prepared using a simple hydrothermal method and annealed at 500oC. The non-milled sample presented coercivity of about 1.9 kOe, saturation magnetization of 69.5 emu/g, and a remanence ratio of 0.42. After milling, two samples attained coercivity of 4.2 and 4.1 kOe, and saturation magnetization of 67.0 and 71.4 emu/g respectively. The remanence ratio MR/MS for these samples increase to 0.49 and 0.51, respectively. To investigate the influence of the microstructure on the magnetic behavior of these samples, we used X-ray powder diffraction (XPD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The XPD analysis by the Williamson-Hall plot was used to estimate the average crystallite size and strain induced by mechanical milling in the samples

    Late time cosmic acceleration from vacuum Brans-Dicke theory in 5D

    Full text link
    We show that the scalar-vacuum Brans-Dicke equations in 5D are equivalent to Brans-Dicke theory in 4D with a self interacting potential and an effective matter field. The cosmological implication, in the context of FRW models, is that the observed accelerated expansion of the universe comes naturally from the condition that the scalar field is not a ghost, i.e., ω>−3/2\omega > - 3/2. We find an effective matter-dominated 4D universe which shows accelerated expansion if −3/2<ω<−1- 3/2 < \omega < - 1. We study the question of whether accelerated expansion can be made compatible with large values of ω\omega, within the framework of a 5D scalar-vacuum Brans-Dicke theory with variable, instead of constant, parameter ω\omega. In this framework, and based on a general class of solutions of the field equations, we demonstrate that accelerated expansion is incompatible with large values of ω\omega.Comment: In V2 the summary section is expanded. To be published in Classical and Quantum Gravity

    Oxidation of the borohydride Ion at silver nanoparticles on a glassy carbon electrode (GCE) using pulsed potential techniques

    No full text
    Direct oxidation borohydride fuel cells are very attractive energy conversion devices. Silver has been reported as one of the few materials which can catalyze an 8-electron oxidation. Potential step amperometric pulse techniques to synthesize nanostructured silver material on flat glassy carbon electrodes is reported and significant differences with bulk silver deposit have been observed. The oxidation of borohydride ion on the silver particles occurs at -0.025 V vs. SCE and the potential decreases towards negative values at longer cycle times. The oxidation current also decreases with the number of cycles, suggesting that the silver active sites become partially blocked by oxidation products of borohydride. The electroactive area per unit electrode area of silver was relatively low for particles deposited using potential step amperometric techniques on glassy carbon (0.002 cm2 per cm-2) compared with the area found at a polycrystalline silver electrode (0.103 cm2 per cm-2
    • …
    corecore