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PACS. 12.60.Cn – Extensions of electroweak gauge sector.

PACS. 12.15.Ff – Quark and lepton masses and mixing.

Abstract. – A model based on the local gauge group SU(3)c ⊗ SU(3)L ⊗ U(1)X without
particles with exotic electric charges is shown to be able to provide the quark mass spectrum and
their mixing, by means of universal see-saw mechanisms, avoiding a hierarchy in the Yukawa
coupling constants.

The Standard Model (SM), with all its successes, is in the unaesthetic position of having
no explanation of fermion masses and mixing angles, both in the quark and lepton sectors.
Besides, recent experimental results on neutrino oscillations [1], which imply physics beyond
the SM, call for extensions of the model. In this regard, models based on the local gauge
group SU(3)c ⊗SU(3)L ⊗U(1)X (named in the literature 3-3-1 models) have been advocated
recently, due to the fact that several versions of the model can be constructed so that anomaly
cancellation is achieved [2, 3] under the condition that the number of families Nf equals the
number of colors Nc = 3. Among those models we have chosen to work with a particular one
that avoids the inclusion of fermion fields with exotic electric charges.

As has been recently pointed out [4], the appearance of see-saw mechanisms could be in
itself a guiding principle to distinguish between fundamental scales and those which are not;
if this is so, then the explanation of the five orders of magnitude spanned by the quark mass
spectrum would require a new mass scale unconnected with the electroweak symmetry break-
ing mass scale, which may come from new physics, e.g.: supersymmetry, left-right symmetric
models, or something else. See-saw origin for all fermion masses has been analyzed in the past
in the context of several models [5].

In the framework provided by a 3-3-1 model, and by using a convenient set of Higgs fields,
we show that one can avoid hierarchies in the Yukawa couplings. The presence of a new
scale V � v related to the breaking of SU(3)L ⊗ U(1)X , triggers see-saw mechanisms that
provide a sensible mass spectrum for quarks. At the same time, these mechanisms provide
relations between the mass eingenstates and the weak interaction eingenstates, and thus a
Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix emerges.

The model based on the local gauge group SU(3)c⊗SU(3)L⊗U(1)X has 17 gauge Bosons:
one gauge field Bµ associated with U(1)X , the 8 gluon fields Gµ associated with SU(3)c

(∗) E-mail: wponce@naima.udea.edu.co

c© EDP Sciences
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which remain massless after breaking the symmetry, and another 8 gauge fields associated
with SU(3)L and that we write for convenience as [6]

1
2
λαA

µ
α =

1√
2


 Dµ

1 W+µ K+µ

W−µ Dµ
2 K0µ

K−µ K̄0µ Dµ
3


 ,

where Dµ
1 = Aµ

3/
√

2 + Aµ
8/

√
6, Dµ

2 = −Aµ
3/

√
2 + Aµ

8/
√

6, and Dµ
3 = −2Aµ

8/
√

6. λi, i =
1, 2, ..., 8, are the eight Gell-Mann matrices normalized as Tr(λiλj) = 2δij .

The charge operator associated with the unbroken gauge symmetry U(1)Q is given by
Q = λ3L/2 +λ8L/(2

√
3) +XI3, where I3 = Diag(1, 1, 1) (the diagonal 3× 3 unit matrix), and

the X values, related to the U(1)X hypercharge, are fixed by anomaly cancellation. The sine
square of the electroweak mixing angle is given by S2

W = 3g2
1/(3g2

3 +4g2
1), where g1 and g3 are

the coupling constants of U(1)X and SU(3)L, respectively, and the photon field is given by

Aµ
0 = SWAµ

3 + CW

[
TW√

3
Aµ

8 +
√

(1 − T 2
W /3)Bµ

]
, (1)

where CW and TW are the cosine and tangent of the electroweak mixing angle, respectively.
The two weak flavor diagonal neutral currents in the model are coupled to the gauge

Bosons:

Zµ
0 = CWAµ

3 − SW

[
TW√

3
Aµ

8 +
√

(1 − T 2
W /3)Bµ

]
; Z ′µ

0 = −
√

(1 − T 2
W /3)Aµ

8 +
TW√

3
Bµ, (2)

where Zµ
0 coincides with the neutral gauge boson of the SM [3]. There is also an electrically

neutral current associated with the flavor non-diagonal gauge boson K0µ which is charged in
the sense that it has a kind of weak V isospin charge.

The quark content of the model is [3, 6] Qi
L = (ui, di,Di)L ∼ (3, 3, 0), i = 1, 2 for

two families, where Di
L are two extra quarks of electric charge −1/3 (numbers inside the

parenthesis stand for the [SU(3)c, SU(3)L, U(1)X ] quantum numbers); Q3
L = (d3, u3, U)L ∼

(3, 3∗, 1/3), where UL is an extra quark of electric charge 2/3. The right-handed quarks are
uac

L ∼ (3∗, 1,−2/3), dac
L ∼ (3∗, 1, 1/3) with a = 1, 2, 3, a family index, Dic

L ∼ (3∗, 1, 1/3), i =
1, 2, and U c

L ∼ (3∗, 1,−2/3). The lepton content of the model is LaL = (e−a , ν0
a, N

0
a )L ∼

(1, 3∗,−1/3), for a = 1, 2, 3 = e, µ, τ , respectively (three SU(3)L anti-triplets), and the three
singlets e+

aL ∼ (1, 1, 1), with ν0
a the neutrino field associated with the lepton ea and N0

a playing
the role of the corresponding right-handed neutrinos. There are not exotic charged leptons,
and universality for the known leptons in the three families is present at tree level in the weak
basis. With the former quantum numbers the model is free of all the gauge anomalies [6].

Instead of using the set of Higgs fields introduced in the original papers [3], we use the
following set of four scalar triplets, with their Vacuum Expectation Values (VEV) as stated:

〈φT
1 〉 = 〈(φ+

1 , φ0
1, φ

′0
1 )〉 = 〈(0, 0, v1)〉 ∼ (1, 3, 1/3);

〈φT
2 〉 = 〈(φ+

2 , φ0
2, φ

′0
2 )〉 = 〈(0, v2, 0)〉 ∼ (1, 3, 1/3);

〈φT
3 〉 = 〈(φ0

3, φ
−
3 , φ

′−
3 )〉 = 〈(v3, 0, 0)〉 ∼ (1, 3,−2/3);

〈φT
4 〉 = 〈(φ+

4 , φ0
4, φ

′0
4 )〉 = 〈(0, 0, V )〉 ∼ (1, 3, 1/3),

with the hierarchy v1 ∼ v2 ∼ v3 ∼ v ∼ 102 GeV 	 V ∼ TeV. The analysis shows that this set
of VEV breaks the SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry in two steps following the scheme

SU(3)c ⊗ SU(3)L ⊗ U(1)X
V−→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y

v−→ SU(3)c ⊗ U(1)Q,
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where the first scale comes from V + v1 ≈ V and the second one from v2 + v3 ≈ v. The
breaking allows for the matching conditions g2 = g3 and 1/g2

Y = 1/g2
1 +1/(3g2

2), where g2 and
gY are the gauge coupling constants of the SU(2)L and U(1)Y gauge groups in the SM.

Related models to this, with the same fermion content but different scalar sector (φ1 is
absent) are analyzed in the papers in refs. [3]. Other 3-3-1 models without exotic electric
charges, but with different fermion contents, can be found in refs. [7]

The Higgs scalars introduced above are used to write the Yukawa terms for the quarks. In
the case of the Up quark sector, the most general invariant Yukawa Lagrangian is given by

Lu
Y =

∑
α=1,2,4

Q3
LφαC

(
hU

αU c
L +

3∑
a=1

hu
aαu

ac
L

)
+

2∑
i=1

Qi
Lφ

∗
3C

(
3∑

a=1

hu
iau

ac
L + h′U

i U c
L

)
+ H.c., (3)

where the hu,U ′s are couplings that we assume of order one. C is the charge conjugation
operator. In order to restrict the number of Yukawa couplings, and produce a realistic fermion
mass spectrum, we introduce the following anomaly-free [8] discrete Z2 symmetry:

Z2(Qa
L, φ2, φ3, φ4, u

ic
L , dac

L ) = 1 , Z2(φ1, u
3c
L , U c

L,D
ic
L , LaL, e

+
aL) = 0, (4)

where a = 1, 2, 3 (= e, µ, τ for the leptons) and i = 1, 2 are family indices.
Then in the basis (u1, u2, u3, U) we get, from eqs. (3)-(4), the following tree level Up quark

mass matrix:

Mu =




0 0 0 hu
11v1

0 0 0 hu
21v1

hu
13v3 hu

23v3 hu
32v2 hu

34V
h′U

1 v3 h′U
2 v3 hU

2 v2 hU
4 V


 , (5)

which is a see-saw–type mass matrix, with one eigenvalue equal to zero.
On the other hand, the Yukawa terms for the Down quark sector, using the four Higgs

scalars introduced, are

Ld
Y =

∑
α=1,2,4

∑
i

Qi
Lφ

∗
αC


∑

a

hd
iaαd

ac
L +

∑
j

hD
ijαD

jc
L


+Q3

Lφ3C

(∑
i

hD
i Dic

L +
∑

a

hd
ad

ac
L

)
+ H.c.

(6)
In the basis (d1, d2, d3,D2,D3) and using the discrete symmetry Z2, the former expression

produces the following tree level Down quark mass matrix:

Md =




0 0 0 hd
11v1 hd

21v1

0 0 0 hd
12v1 hd

22v1

0 0 0 hd
13v1 hd

23v1

hD
11v2 hD

21v2 hD
1 v3 hD

114V hD
214V

hD
12v2 hD

22v2 hD
2 v3 hD

124V hD
224V


 , (7)

where we have used h
D(d)
iaα vα = h

D(d)
ia vα. The mass matrix Md is again a see-saw type, with

at least one eigenvalue equal to zero.
Before entering into a more detailed analysis of Mu and Md, let us insist on the resulting

see-saw character of these matrices. In both cases there is a zero eigenvalue that we immedi-
ately identify with the u and d quarks of the first family, respectively. Then, they are massless
at tree level in the model considered here. In the U sector, the c quark acquires a see-saw
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mass, while in the D sector, both s quark and b quark have see-saw masses (nevertheless, with
a particular election of parameters, one can end up with a massless s quark too). The U sector
structure is in some sense singular because the top mass is of the order of the electroweak
scale; in fact it gets already a tree level mass of this order.

A further numerical check of the matrices is definitive in the sense that the model provides
a see-saw mass hierarchy defined by the relationship between the symmetry-breaking scales
v/V . In what follows, and without loss of generality, we are going to impose the condition
v1 = v2 = v3 ≡ v 	 V , with the value for v fixed by the mass of the charged weak gauge
boson M2

W± = g2
3(v2

2 + v2
3)/2 = g2

2v
2 which implies v = 246/2 = 123 GeV (v1 is associated

with an SU(2)L singlet and does not contribute to the W± mass).
Starting with the U matrix, the analysis shows that M†

uMu has one zero eigenvalue, related
to the eigenvector [(hu

32h
′U
2 − hu

23h
U
2 ), (hu

13h
U
2 − hu

32h
′U
1 ), (hu

23h
′U
1 − hu

13h
′U
2 ), 0], that we may

identify with the up quark u in the first family, which remains massless at tree level.
In order to simplify the otherwise cumbersome calculations and to avoid the proliferation

of unnecessary parameters at this stage of the analysis, we propose to start with the following
simple matrix:

M ′
u = hv




0 0 0 1
0 0 0 1
1 1 hu

32/h δ−1

1 1 1 δ−1


 , (8)

where δ = v/V is the expansion parameter and h is a parameter that can take any value of
order 1. The results below show that this matrix has the necessary ingredients to produce a
consistent mass spectrum.

Neglecting terms of order δ5 and higher, the four eigenvalues of M ′†
u M ′

u are: one zero
eigenvalue related to the eigenstate (u1 − u2)/

√
2 (notice the maximal mixing present); a see-

saw eigenvalue 4h2V 2δ4 = 4h2v2δ2 ≈ m2
c associated to the charm quark, and the other two

h2V 2δ2

2
[e2

− + δ2e2
+(4 − e2

−)/4] ≈ v2

2
(h− hu

32)
2 ≈ m2

t ,

h2V 2[2 + δ2(6 + e+/2) + δ4(4e2
+ − e2

+e2
− − 32)/8] ≈ m2

U ,

where e± = (1±hu
32/h). The eigenvectors are given by the rows of the following 4× 4 unitary

matrix:

UU
L =




1√
2

− 1√
2

0 0
Cη1√

2

Cη1√
2

0 −Sη1
∆

0 0 ∆−1 − δ e+
2∆

Sη1√
2

Sη1√
2

Cη1δ e+

2∆

Cη1
∆


 , (9)

where Cη1 and Sη1 ≈ √
2δ(1 − 3δ2) are the cosine and sine of a mixing angle η1, and

∆ =
√

(1 + δ2e+/4).
So, in the Up quark sector the heavy quark gets a large mass of order V , the top quark

gets a mass at the electroweak scale (times a difference of Yukawas that in the general case
of matrix (5) is (hU

2 − hu
32)), the charm quark gets a see-saw mass, and the first family up

quark u remains massless at tree level. From the former expressions we get |hU
2 − hu

32| ∼ 2
and mc ≈ 2hv2/V , which in turn implies V ≈ hm2

t/mc ≈ 19.4hTeV, fixing in this way an
upper limit for the 3-3-1 mass scale V (experimental values are taken from ref. [9]).

We go now to the D quark mass matrix. This matrix is full of physical possibilities,
depending upon the particular values assigned to the Yukawa couplings. For example, if all of
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them are different from each other, then the matrix M†
dMd has rank one with a zero eigenvalue

related to the eingenvector [(hD
22h

D
1 − hD

21h
D
2 ), (hD

11h
D
2 − hD

12h
D
1 ), (hD

21h
D
12 − hD

11h
D
22), 0, 0], that

we may identify with the down quark d in the first family (which in any case remains massless
at tree level); for this case the general analysis shows that we have two see-saw eigenvalues
associated with the bottom b and strange s quarks.

In the particular case when all the Yukawas are equal to one but hD
114 = hD

224 = HD �= 1,
the null space of M†

dMd has rank two, with the eigenvectors associated with the zero eigen-
values given by [−2, 1, 1, 0, 0]/

√
6 and [0,−1, 1, 0, 0]/

√
2, which in turn implies only one see-saw

eigenvalue associated with the bottom quark b, with a value for its mass approximately equal
to 6vδ/(1 + HD), (with masses for the two heavy states of the order of V (1 ±HD)).

For the first case mentioned, the chiral symmetry remaining at tree level is SU(2)f (quarks
u and d massless), and for the second case the chiral symmetry is SU(3)f (quarks u, d and s
are massless). In both cases the chiral symmetry is broken by the radiative corrections.

In any way, a realistic analysis of the down sector requires to have in mind the mixing
matrix (9) of the up quark sector and the fact that the CKM mixing matrix is almost unitary
and diagonal. Aiming at this and in order to avoid again a proliferation of parameters, let
us analyze the particular case given by the following left-right symmetric (Hermitian) down
quark mass matrix:

M ′
d = h′v




0 0 0 1 1
0 0 0 1 1
0 0 0 f g
1 1 f HDδ−1 δ−1

1 1 g δ−1 HDδ−1


 , (10)

where f and g are parameters of order one. This is the most general Hermitian mass matrix
with only one eigenvalue equal to zero, related with the state (d1 − d2)/

√
2, as required in

order to end up with an almost diagonal CKM mixing matrix.
The two see-saw exact eigenvalues of M ′

d are

−h′ v
δ

4




[
(f − g)2

HD − 1
+

8 + (f + g)2

1 + HD

]
±

√[
(f − g)2

HD − 1
+

8 + (f + g)2

1 + HD

]2

− 8(f − g)2

1 − (HD)2


 . (11)

Moreover, notice that for the particular case g = −f , the five eigenvalues of the Hermitian
matrix above get the following simple exact analytical expressions:

h′ δ−1 v

2

[
0,HD

+ (1 ±
√

1 + 16δ2/(HD
+ )2), HD

− (1 ±
√

1 + 8f2δ2/(HD− )2)
]
, (12)

where HD
± = HD ± 1. The see-saw values are thus −4 δh′v/HD

+ and −2 δ f2 h′ v/HD
− ; they

imply f2h′/h ≈ mbH
D
− /mc ≈ 3HD

− and 2h′/h ≈ HD
+ ms/mc, that can be seen as either a mild

hierarchy between h and h′, or implying a detailed tuning of some of the parameters of order
one (inconvenience that could be avoided by working in a frame where SU(3)f becomes the
original chiral symmetry).

The eigenvectors are now given by the rows of the following 5 × 5 unitary matrix:

UD
L =

1√
2




1 −1 0 0 0
Cη2 Cη2 0 −Sη2 Sη2

0 0
√

2Cη3 −Sη3 −Sη3

Sη2 Sη2 0 Cη2 −Cη2

0 0
√

2Sη3 Cη3 Cη3


 , (13)



738 EUROPHYSICS LETTERS

⊗ ⊗

× ×

λ13v1v3 −f1v3(−f2v3)

φ0∗
3 φ0∗

4 (φ0∗
2 )φ′0

1 φ′0∗
1

uj
L

Uc
L Djc

LV hU
4

(a)
V hD

jj4

(b)
UL Dj

Luic
L

dac
Ldi

L
h′U

j hD
ij4(2)hu

i1 hd
ja

Fig. 1 – The five one-loop diagrams that produce the radiative masses for the quarks u and d.

where: Cη2 and Sη2 ≈ 2 δ[1 − δ2/(HD
+ )2]/HD

+ ; Cη3 and Sη3 ≈ √
2 δ f [1 − 3 f2δ2/(HD

− )2]/HD
−

are the cosines and sines of other two mixing angles η2 and η3. Notice that up to this point,
the CKM matrix U

(0)
CKM = Uu †

L Ud
L deviates from the identity just by terms of the order δ2

and higher; where Uu
L is the 3 × 3 upper sector of UU

L of eq. (9) and the same for Ud
L.

The consistency of the model requires that one can identify mechanisms able to produce
masses for the first family, and to generate the CKM mixing angles. A detailed study of the
Lagrangian for the Up quark sector (3), the discrete Z2 symmetry (4) and the scalar potential,
allows us to draw the radiative diagram in fig. 1a, which is the only diagram available to
produce a finite one-loop radiative correction in the quark subspace (u1, u2) of the Up quark
sector. The mixing of the Higgs Bosons comes from a term in the scalar potential of the form
λ13(φ∗

1φ1)(φ∗
3φ3), which turns on the radiative correction.

In order to have a contribution different from zero we must avoid maximal mixing in the
first two weak interaction states, otherwise a submatrix of the democratic type arises. This
is done by taking hu

11 = 1 − k and h′U
1 = 1 + k in matrix (8) insted of 1, where k must be a

very small parameter inorder to guarantee the see-saw character of the Up sector quark mass
matrix. Evaluating the contribution coming from the diagram in fig. 1a we get

∆ji = Nji[M2m2
1 ln(M2/m2

1) −M2m2
3 ln(M2/m2

3) + m2
3m

2
1 ln(m2

1/m
2
3)], (14)

where Nji = h′U
j hu

i1λ13v1v3M/[16π2(m2
3 − m2

1)(M
2 − m2

1)(M
2 − m2

3)], M = hU
4 V is the

mass of the heavy Up quark, and m1 and m3 are the masses of φ′0
1 and φ0

3, respectively.
To estimate the contribution given by this diagram we assume the validity of the “extended
survival hypothesis” [10] which in our case means m1 ≈ m3 ≈ v, implying

mu ≈ λ13vδ ln(V/v)/8π2 ≈ 0.85λ13 MeV, (15)

which for λ13 ∼ 2 produces mu ≈ 1.7 MeV, which is of the correct order of magnitude [9] (result
independent of the value of k in first approximation). Due to the fact that the parameter k �= 0,
the state related to the u quark looses its maximal mixing, becoming now {−(h−hu

32)u1 +[h−
hu

32(1 − k)]u2 + ku3}/N , with N being the normalization factor. The value of k is estimated
with the value of the Cabbibo angle to be k ≈ 0.1.

For the Down quark sector there are four one-loop diagrams, two for D1 and other two
for D2 as depicted in fig. 1b. The mixing in the Higgs sector comes from terms in the scalar
potential of the form f1φ1φ3φ4 + f2φ1φ2φ3 + H.c.. When the algebra is done we get

md ≈ 2(f1 + f2)δ ln(V/v)/8π2, (16)

which for f1 = f2 ≈ v implies md ≈ 2mu, without introducing a new mass scale in the model.
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The discrete Z2 symmetry introduced eliminates possible tree level lepton mass terms of
the form LaLφ3CebL and LaLLbLφ3. Then in order to generate masses for the leptons we
must use either leptoquark Higgs Fields if we intend to use the radiative mechanism, or exotic
leptons if we want to use see-saw mechanisms. For the neutrinos, for example, this analysis
has been done in ref. [11], where new SU(3)L Higgs scalar multiplets are introduced.

In a model like this with four scalar triplets, we should worry about possible flavor-changing
neutral current (FCNC) effects. First, we notice that due to our Z2 symmetry, they do
not occur at tree level because each flavor couples only to a single multiplet. They can
enter as a consequence of the violation of unitarity of the CKM matrix U0

CKM which is a
3 × 3 submatrix of a rectangular 4 × 5 matrix. The violation of unitarity in our analysis
is proportional to δ2, implying FCNC proportional to δ4. Then, a value of δ ≈ 10−2 is
perfectly safe as far as violation of unitarity of the CKM matrix and possible FCNC effects
are concerned. Experimental constraints on the posible violation of unitarity of the CKM
matrix are discussed in Section 11 of ref. [9].

In several 3-3-1 models with three scalar triplets [2, 3] a discrete symmetry can suppress
mass terms for the neutral Higgs bosons and to produce axion states [12]. The preliminary
analysis shows that the Z2 symmetry introduced in our model with four scalar triplets, pro-
vides only with the eight Goldstone bosons needed, and nothing else.

In conclusion, we have presented a model with only two energy scales, that has the power of
avoiding hierarchies among Yukawa couplings. Throughout the analysis, all the Yukawas are
of order one, as also is the case for the dimensionless Higgs coupling λ13. The new ingredients
of the model are: the mass scale V used to define the expansion parameter δ, a new set of Higgs
scalars and VEV and the discrete anomaly-free symmetry Z2. All this triggers generalized
see-saw mechanism in the Up and Down quark sectors.

REFERENCES

[1] For a recent review, see Strumia A. and Vissani F., Implications of neutrino data circa 2005
(hep-ph/0503246).

[2] Pisano F. and Pleitez V., Phys. Rev. D, 46 (1992) 410; Frampton P. H., Phys. Rev. Lett.,
69 (1992) 2887; Ng D., Phys. Rev. D, 49 (1994) 4805; Özer M., Phys. Rev. D, 54 (1996) 4561.
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