19 research outputs found
Occupation and three-year incidence of respiratory symptoms and lung function decline: the ARIC Study
<p>Abstract</p> <p>Background</p> <p>Specific occupations are associated with adverse respiratory health. Inhalation exposures encountered in these jobs may place workers at risk of new-onset respiratory disease.</p> <p>Methods</p> <p>We analyzed data from 8,967 participants from the Atherosclerosis Risk in Communities (ARIC) study, a longitudinal cohort study. Participants included in this analysis were free of chronic cough and phlegm, wheezing, asthma, chronic bronchitis, emphysema, and other chronic lung conditions at the baseline examination, when they were aged 45-64 years. Using data collected in the baseline and first follow-up examination, we evaluated associations between occupation and the three-year incidence of cough, phlegm, wheezing, and airway obstruction and changes in forced expiratory volume in one second (FEV<sub>1</sub>) and forced vital capacity (FVC) measured by spirometry. All associations were adjusted for age, cigarettes per day, race, smoking status, and study center.</p> <p>Results</p> <p>During the approximately three-year follow-up, the percentage of participants developing chronic cough was 3%; chronic phlegm, 3%; wheezing, 3%; and airway obstruction, defined as FEV<sub>1 </sub>< lower limit of normal (LLN) and FEV<sub>1</sub>/FVC < LLN, 2%. The average annual declines in FEV<sub>1 </sub>and FVC were 56 mL and 66 mL, respectively, among men and 40 mL and 52 mL, respectively, among women. Relative to a referent category of managerial and administrative support occupations, elevated risks of new-onset chronic cough and chronic phlegm were observed for mechanics and repairers (chronic cough: RR: 1.81, 95% CI: 1.02, 3.21; chronic phlegm: RR: 2.10, 95% CI: 1.23, 3.57) and cleaning and building service workers (chronic cough: RR: 1.85, 95% CI: 1.01, 3.37; chronic phlegm: RR: 2.28, 95% CI: 1.27, 4.08). Despite the elevated risk of new-onset symptoms, employment in cleaning and building services was associated with attenuated lung function decline, particularly among men, who averaged annual declines in FEV<sub>1 </sub>and FVC of 14 mL and 23 mL, respectively, less than the declines observed in the referent population.</p> <p>Conclusions</p> <p>Employment in mechanic and repair jobs and cleaning and building service occupations are associated with increased incidence of respiratory symptoms. Specific occupations affect the respiratory health of adults without pre-existing respiratory health symptoms and conditions, though long-term health consequences of inhalation exposures in these jobs remain largely unexplored.</p
The Importance of Mid-to-Late-Life Body Mass Index Trajectories on Late-Life Gait Speed
Background: Prior studies suggest being overweight may be protective against poor functional outcomes in older adults.
Methods: Body mass index (BMI, kg/m2) was measured over 25 years across five visits (1987-2011) among Atherosclerosis Risk in Communities Study participants (baseline Visit 1 n = 15,720, aged 45-64 years). Gait speed was measured at Visit 5 ("late-life", aged ≥65 years, n = 6,229). BMI trajectories were examined using clinical cutpoints and continuous mixed models to estimate effects of patterns of BMI change on gait speed, adjusting for demographics and comorbidities.
Results: Mid-life BMI (baseline visit; 55% women; 27% black) was associated with late-life gait speed 25 years later; gait speeds were 94.3, 89.6, and 82.1 cm/s for participants with baseline normal BMI (<25), overweight (25 ≤ BMI < 30), and obese (BMI ≥ 30) (p < .001). In longitudinal analyses, late-life gait speeds were 96.9, 88.8, and 81.3 cm/s for participants who maintained normal, overweight, and obese weight status, respectively, across 25 years (p < .01). Increasing BMI over 25 years was associated with poorer late-life gait speeds; a 1%/year BMI increase for a participant with a baseline BMI of 22.5 (final BMI 28.5) was associated with a 4.6-cm/s (95% confidence interval: -7.0, -1.8) slower late-life gait speed than a participant who maintained a baseline BMI of 22.5.
Conclusion: Being overweight in older age was not protective of mobility function. Maintaining a normal BMI in mid- and late-life may help preserve late-life mobility
Relation of cholesterol and lipoprotein parameters with carotid artery plaque characteristics: The Atherosclerosis Risk in Communities (ARIC) carotid MRI study
There is a paucity of data regarding relations of apolipoproteins (apolipoprotein B [ApoB] and apolipoprotein A-1 [Apo A-1]), lipoprotein particle measures (low-density lipoprotein particle concentration [LDLp] and high-density lipoprotein particle concentration [HDLp]), and lipoprotein cholesterol measures (low-density lipoprotein cholesterol [LDL-C], non–high-density lipoprotein cholesterol [non– HDL-C], and high-density lipoprotein cholesterol [HDL-C]) with atherosclerotic plaque burden, plaque eccentricity, and lipid-rich core presence as a marker of high-risk plaques
Prospective Association of Daily Steps with Cardiovascular Disease: A Harmonized Meta-Analysis
Background:
Taking fewer than the widely promoted “10 000 steps per day” has recently been associated with lower risk of all-cause mortality. The relationship of steps and cardiovascular disease (CVD) risk remains poorly described. A meta-analysis examining the dose–response relationship between steps per day and CVD can help inform clinical and public health guidelines.
Methods:
Eight prospective studies (20 152 adults [ie, ≥18 years of age]) were included with device-measured steps and participants followed for CVD events. Studies quantified steps per day and CVD events were defined as fatal and nonfatal coronary heart disease, stroke, and heart failure. Cox proportional hazards regression analyses were completed using study-specific quartiles and hazard ratios (HR) and 95% CI were meta-analyzed with inverse-variance–weighted random effects models.
Results:
The mean age of participants was 63.2±12.4 years and 52% were women. The mean follow-up was 6.2 years (123 209 person-years), with a total of 1523 CVD events (12.4 per 1000 participant-years) reported. There was a significant difference in the association of steps per day and CVD between older (ie, ≥60 years of age) and younger adults (ie, <60 years of age). For older adults, the HR for quartile 2 was 0.80 (95% CI, 0.69 to 0.93), 0.62 for quartile 3 (95% CI, 0.52 to 0.74), and 0.51 for quartile 4 (95% CI, 0.41 to 0.63) compared with the lowest quartile. For younger adults, the HR for quartile 2 was 0.79 (95% CI, 0.46 to 1.35), 0.90 for quartile 3 (95% CI, 0.64 to 1.25), and 0.95 for quartile 4 (95% CI, 0.61 to 1.48) compared with the lowest quartile. Restricted cubic splines demonstrated a nonlinear association whereby more steps were associated with decreased risk of CVD among older adults.
Conclusions:
For older adults, taking more daily steps was associated with a progressively decreased risk of CVD. Monitoring and promoting steps per day is a simple metric for clinician–patient communication and population health to reduce the risk of CVD
Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts
Background
Although 10 000 steps per day is widely promoted to have health benefits, there is little evidence to support this recommendation. We aimed to determine the association between number of steps per day and stepping rate with all-cause mortality.
Methods
In this meta-analysis, we identified studies investigating the effect of daily step count on all-cause mortality in adults (aged ≥18 years), via a previously published systematic review and expert knowledge of the field. We asked participating study investigators to process their participant-level data following a standardised protocol. The primary outcome was all-cause mortality collected from death certificates and country registries. We analysed the dose–response association of steps per day and stepping rate with all-cause mortality. We did Cox proportional hazards regression analyses using study-specific quartiles of steps per day and calculated hazard ratios (HRs) with inverse-variance weighted random effects models.
Findings
We identified 15 studies, of which seven were published and eight were unpublished, with study start dates between 1999 and 2018. The total sample included 47 471 adults, among whom there were 3013 deaths (10·1 per 1000 participant-years) over a median follow-up of 7·1 years ([IQR 4·3–9·9]; total sum of follow-up across studies was 297 837 person-years). Quartile median steps per day were 3553 for quartile 1, 5801 for quartile 2, 7842 for quartile 3, and 10 901 for quartile 4. Compared with the lowest quartile, the adjusted HR for all-cause mortality was 0·60 (95% CI 0·51–0·71) for quartile 2, 0·55 (0·49–0·62) for quartile 3, and 0·47 (0·39–0·57) for quartile 4. Restricted cubic splines showed progressively decreasing risk of mortality among adults aged 60 years and older with increasing number of steps per day until 6000–8000 steps per day and among adults younger than 60 years until 8000–10 000 steps per day. Adjusting for number of steps per day, comparing quartile 1 with quartile 4, the association between higher stepping rates and mortality was attenuated but remained significant for a peak of 30 min (HR 0·67 [95% CI 0·56–0·83]) and a peak of 60 min (0·67 [0·50–0·90]), but not significant for time (min per day) spent walking at 40 steps per min or faster (1·12 [0·96–1·32]) and 100 steps per min or faster (0·86 [0·58–1·28]).
Interpretation
Taking more steps per day was associated with a progressively lower risk of all-cause mortality, up to a level that varied by age. The findings from this meta-analysis can be used to inform step guidelines for public health promotion of physical activity.
Funding
US Centers for Disease Control and Prevention
Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts
Background Although 10000 steps per day is widely promoted to have health benefits, there is little evidence to support
this recommendation. We aimed to determine the association between number of steps per day and stepping rate
with all-cause mortality.
Methods In this meta-analysis, we identified studies investigating the effect of daily step count on all-cause mortality
in adults (aged ≥18 years), via a previously published systematic review and expert knowledge of the field. We asked
participating study investigators to process their participant-level data following a standardised protocol. The primary
outcome was all-cause mortality collected from death certificates and country registries. We analysed the dose–
response association of steps per day and stepping rate with all-cause mortality. We did Cox proportional hazards
regression analyses using study-specific quartiles of steps per day and calculated hazard ratios (HRs) with inversevariance weighted random effects models.
Findings We identified 15 studies, of which seven were published and eight were unpublished, with study start dates
between 1999 and 2018. The total sample included 47 471 adults, among whom there were 3013 deaths (10·1 per
1000 participant-years) over a median follow-up of 7·1 years ([IQR 4·3–9·9]; total sum of follow-up across studies was
297 837 person-years). Quartile median steps per day were 3553 for quartile 1, 5801 for quartile 2, 7842 for quartile 3,
and 10 901 for quartile 4. Compared with the lowest quartile, the adjusted HR for all-cause mortality was 0·60 (95% CI
0·51–0·71) for quartile 2, 0·55 (0·49–0·62) for quartile 3, and 0·47 (0·39–0·57) for quartile 4. Restricted cubic splines
showed progressively decreasing risk of mortality among adults aged 60 years and older with increasing number of
steps per day until 6000–8000 steps per day and among adults younger than 60 years until 8000–10000 steps per day.
Adjusting for number of steps per day, comparing quartile 1 with quartile 4, the association between higher stepping
rates and mortality was attenuated but remained significant for a peak of 30 min (HR 0·67 [95% CI 0·56–0·83]) and
a peak of 60 min (0·67 [0·50–0·90]), but not significant for time (min per day) spent walking at 40 steps per min or
faster (1·12 [0·96–1·32]) and 100 steps per min or faster (0·86 [0·58–1·28]).
Interpretation Taking more steps per day was associated with a progressively lower risk of all-cause mortality, up to a
level that varied by age. The findings from this meta-analysis can be used to inform step guidelines for public health
promotion of physical activity
Maternal Residential Proximity to Major Roadways and Pediatric Embryonal Tumors in Offspring
The environmental determinants of pediatric embryonal tumors remain unclear. Because of the growing concern over the impact of exposures to traffic-related air pollution on pediatric cancer, we conducted a population-based study evaluating the impact of maternal residential proximity to major roadways on the risk of pediatric embryonal tumors in offspring. We identified children diagnosed with neuroblastoma, Wilms tumor, retinoblastoma, or hepatoblastoma at <5 years of age from the Texas Cancer Registry and selected unaffected controls from birth certificates. Two residential proximity measures were used: (1) distance to the nearest major roadway, and (2) within 500 m of a major roadway. Logistic regression was used to estimate the adjusted odds ratio (aOR) and 95% confidence interval (CI) for each proximity measure on pediatric embryonal tumors. The odds of an embryonal tumor were increased in children born to mothers living within 500 m of a major roadway (aOR = 1.24, 95% CI: 1.00, 1.54). This was consistent for most tumor subtypes, with the strongest associations observed for unilateral retinoblastoma (aOR = 2.57, 95% CI: 1.28, 5.15, for every kilometer closer the mother lived to the nearest major roadway). These findings contribute to the growing evidence that traffic-related air pollution may increase risk for certain pediatric tumors