7 research outputs found

    Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome.

    No full text
    International audienceCONTEXT: Providing accurate estimates of cancer risks is a major challenge in the clinical management of Lynch syndrome. OBJECTIVE: To estimate the age-specific cumulative risks of developing various tumors using a large series of families with mutations of the MLH1, MSH2, and MSH6 genes. DESIGN, SETTING, AND PARTICIPANTS: Families with Lynch syndrome enrolled between January 1, 2006, and December 31, 2009, from 40 French cancer genetics clinics participating in the ERISCAM (Estimation des Risques de Cancer chez les porteurs de mutation des gènes MMR) study; 537 families with segregating mutated genes (248 with MLH1; 256 with MSH2; and 33 with MSH6) were analyzed. MAIN OUTCOME MEASURE: Age-specific cumulative cancer risks estimated using the genotype restricted likelihood (GRL) method accounting for ascertainment bias. RESULTS: Significant differences in estimated cumulative cancer risk were found between the 3 mutated genes (P = .01). The estimated cumulative risks of colorectal cancer by age 70 years were 41% (95% confidence intervals [CI], 25%-70%) for MLH1 mutation carriers, 48% (95% CI, 30%-77%) for MSH2, and 12% (95% CI, 8%-22%) for MSH6. For endometrial cancer, corresponding risks were 54% (95% CI, 20%-80%), 21% (95% CI, 8%-77%), and 16% (95% CI, 8%-32%). For ovarian cancer, they were 20% (95% CI, 1%-65%), 24% (95% CI, 3%-52%), and 1% (95% CI, 0%-3%). The estimated cumulative risks by age 40 years did not exceed 2% (95% CI, 0%-7%) for endometrial cancer nor 1% (95% CI, 0%-3%) for ovarian cancer, irrespective of the gene. The estimated lifetime risks for other tumor types did not exceed 3% with any of the gene mutations. CONCLUSIONS: MSH6 mutations are associated with markedly lower cancer risks than MLH1 or MSH2 mutations. Lifetime ovarian and endometrial cancer risks associated with MLH1 or MSH2 mutations were high but do not increase appreciably until after the age of 40 years

    Digestive and genitourinary sequelae in rectal cancer survivors and their impact on health-related quality of life: Outcome of a high-resolution population-based study

    No full text

    Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers

    No full text
    International audienceRAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have recently been involved in breast and ovarian cancer predisposition: RAD51B, RAD51C, and RAD51D in ovarian cancer, RAD51B and XRCC2 in breast cancer. The aim of this study was to estimate the contribution of deleterious variants in the five RAD51 paralogs to breast and ovarian cancers. The five RAD51 paralog genes were analyzed by next-generation sequencing technologies in germline DNA from 2649 consecutive patients diagnosed with breast and/or ovarian cancer. Twenty-one different deleterious variants were identified in the RAD51 paralogs in 30 patients: RAD51B (n = 4), RAD51C (n = 12), RAD51D (n = 7), XRCC2 (n = 2), and XRCC3 (n = 5). The overall deleterious variant rate was 1.13% (95% confidence interval (CI): 0.72–1.55%) (30/2649), including 15 variants in breast cancer only cases (15/2063; 0.73% (95% CI: 0.34–1.11%)) and 15 variants in cases with at least one ovarian cancer (15/570; 2.63% (95% CI: 1.24–4.02%)). This study is the first evaluation of the five RAD51 paralogs in breast and ovarian cancer predisposition and it demonstrates that deleterious variants can be present in breast cancer only cases. Moreover, this is the first time that XRCC3 deleterious variants have been identified in breast and ovarian cancer cases

    Clinical relevance of 8q23, 15q13 and 18q21 SNP genotyping to evaluate colorectal cancer risk.

    No full text
    To determine if the at-risk single-nucleotide polymorphism (SNP) alleles for colorectal cancer (CRC) could contribute to clinical situations suggestive of an increased genetic risk for CRC, we performed a prospective national case-control study based on highly selected patients (CRC in two first-degree relatives, one before 61 years of age; or CRC diagnosed before 51 years of age; or multiple primary CRCs, the first before 61 years of age; exclusion of Lynch syndrome and polyposes) and controls without personal or familial history of CRC. SNPs were genotyped using SNaPshot, and statistical analyses were performed using Pearson's χ(2) test, Cochran-Armitage test of trend and logistic regression. We included 1029 patients and 350 controls. We confirmed the association of CRC risk with four SNPs, with odds ratio (OR) higher than previously reported: rs16892766 on 8q23.3 (OR: 1.88, 95% confidence interval (CI): 1.30-2.72; P=0.0007); rs4779584 on 15q13.3 (OR: 1.42, CI: 1.11-1.83; P=0.0061) and rs4939827 and rs58920878/Novel 1 on 18q21.1 (OR: 1.49, CI: 1.13-1.98; P=0.007 and OR: 1.49, CI: 1.14-1.95; P=0.0035). We found a significant (P<0.0001) cumulative effect of the at-risk alleles or genotypes with OR at 1.62 (CI: 1.10-2.37), 2.09 (CI: 1.43-3.07), 2.87 (CI: 1.76-4.70) and 3.88 (CI: 1.72-8.76) for 1, 2, 3 and at least 4 at-risk alleles, respectively, and OR at 1.71 (CI: 1.18-2.46), 2.29 (CI: 1.55-3.38) and 6.21 (CI: 2.67-14.42) for 1, 2 and 3 at-risk genotypes, respectively. Combination of SNPs may therefore explain a fraction of clinical situations suggestive of an increased risk for CRC
    corecore