179 research outputs found

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    Transcription factors that mediate epithelial–mesenchymal transition lead to multidrug resistance by upregulating ABC transporters

    Get PDF
    Development of multidrug resistance (MDR) is a major deterrent in the effective treatment of metastatic cancers by chemotherapy. Even though MDR and cancer invasiveness have been correlated, the molecular basis of this link remains obscure. We show here that treatment with chemotherapeutic drugs increases the expression of several ATP binding cassette transporters (ABC transporters) associated with MDR, as well as epithelial–mesenchymal transition (EMT) markers, selectively in invasive breast cancer cells, but not in immortalized or non-invasive cells. Interestingly, the mere induction of an EMT in immortalized and non-invasive cell lines increased their expression of ABC transporters, migration, invasion, and drug resistance. Conversely, reversal of EMT in invasive cells by downregulating EMT-inducing transcription factors reduced their expression of ABC transporters, invasion, and rendered them more chemosensitive. Mechanistically, we demonstrate that the promoters of ABC transporters carry several binding sites for EMT-inducing transcription factors, and overexpression of Twist, Snail, and FOXC2 increases the promoter activity of ABC transporters. Furthermore, chromatin immunoprecipitation studies revealed that Twist binds directly to the E-box elements of ABC transporters. Thus, our study identifies EMT inducers as novel regulators of ABC transporters, thereby providing molecular insights into the long-standing association between invasiveness and MDR. Targeting EMT transcription factors could hence serve as novel strategies to curb both metastasis and the associated drug resistance

    Inhibition of HCV 3a core gene through Silymarin and its fractions

    Get PDF
    Hepatitis C is a major health problem affecting 270 million individuals in world including Pakistan. Current treatment regimen, interferon alpha and ribavirin only cure half of patients due to side effects and high cost. In the present study Silybum marianum (Milk thistle) seeds were collected, extracted and analyzed against HCV 3a core gene by transiently transfecting the liver cells with HCV core plasmid. Our results demonstrated that Silymarin (SM) dose dependently inhibit the expression or function of HCV core gene at a non toxic concentration while the GAPDH remained constant. To identify the active ingredient, SM was fractioned by thin layer chromatography (TLC), column chromatography and HPLC. Purified fractions were tested for HCV core gene and western blotting results showed that two factions of SM (S1 and S2) inhibit HCV 3a core expression or function in liver cells Our results suggest SM and its fractions (S1 and S2) inhibit HCV core gene of 3a genotype and combination of SM and its fractions with interferon will be a better option to treat HCV infection

    Overexpression of the oncostatin-M receptor in cervical squamous cell carcinoma is associated with epithelial-mesenchymal transition and poor overall survival.

    Get PDF
    BACKGROUND: Copy-number gain of the oncostatin-M receptor (OSMR) occurs frequently in cervical squamous cell carcinoma (SCC) and is associated with adverse clinical outcome. We previously showed that OSMR overexpression renders cervical SCC cells more sensitive to the major ligand oncostatin-M (OSM), which increases migration and invasion in vitro. We hypothesised that a major contribution to this phenotype would come from epithelial-mesenchymal transition (EMT). METHODS: We performed a comprehensive integrated study, involving in vitro cell line studies, in vivo animal models and numerous clinical samples from a variety of anatomical sites. RESULTS: In independent sets of cervical, head/neck and lung SCC tissues, OSMR expression levels correlated with multiple EMT-associated phenotypic markers and transcription factors. OSM treatment of OSMR overexpressing cervical SCC cells produced consistent EMT changes and increased tumour sphere formation in suspension culture. In a mouse model, OSMR overexpressing SCC cells treated with OSM showed significant increases in lung colonisation. The biological effects of exogenous OSM were mirrored by highly significant adverse overall survival in cervical SCCs with OSMR overexpression (N=251). CONCLUSIONS: OSM:OSMR interactions are able to induce EMT, increased cancer stem cell-like properties and enhanced lung colonisation in SCC cells. These changes are likely to contribute to the highly significant adverse outcome associated with OSMR overexpression in cervical SCCs.This work was supported by Cancer Research UK (Programme Grant A13080).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group

    Cancer-associated fibroblasts are positively correlated with metastatic potential of human gastric cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognosis of gastric cancer patients is difficult to predict because of defects in establishing the surgical-pathological features. Cancer-associated fibroblasts (CAFs) have been found to play prominent role in promoting tumor growth, invasion and metastasis. Thus raises the hypothesis that the extent of CAFs prevalence may help to establish the prognosis of gastric cancer patients.</p> <p>Methods</p> <p>Immunochemistry and realtime-PCR experiments were carried out to compare the expression of proteins which are specific markers of CAFs or secreted by CAFs in the tumor and normal tissue specimens. The extent of CAFs' prevalence was graded according to immunochemical staining, and correlation was further analyzed between CAFs' prevalence and other tumor characteristics which may influence the prognosis of gastric cancer patients.</p> <p>Results</p> <p>Nearly 80 percent of normal gastric tissues were negative or weak positive for CAFs staining, while more than 60 percent of gastric cancer tissues were moderate or strong positive for CAFs staining. Realtime-PCR results also showed significant elevated expression of FAP, SDF-1 and TGF-β1 in gastric cancer tissues compared to normal gastric tissues. Further analysis showed that CAFs' prevalence was correlated with tumor size, depth of the tumor, lymph node metastasis, liver metastasis or peritoneum metastasis.</p> <p>Conclusions</p> <p>Reactive cancer associated fibroblasts (CAFs) were frequently accumulated in gastric cancer tissues, and the prevalence of CAFs was correlated with tumor size, depth of the tumor and tumor metastasis, thus give some supports for establishing the prognosis of the gastric cancer patients.</p

    Twist and snai1 expression in pharyngeal squamous cell carcinoma stroma is related to cancer progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epithelial-mesenchymal transition (EMT) is a crucial process in tumorigenesis since tumor cells attain fibroblast-like features enabling them to invade to surrounding tissue. Two transcription factors, <it>TWIST </it>and <it>SNAI1</it>, are fundamental in regulating EMT.</p> <p>Methods</p> <p>Immunohistochemistry was used to study the expression of TWIST and SNAI1 in 109 pharyngeal squamous cell carcinomas.</p> <p>Results</p> <p>Tumors with intense stromal staining of TWIST relapsed more frequently (p = 0.04). Tumors with both positive TWIST and SNAI1 immunoreactivity in the stroma were at least Stage II (p = 0.05) and located more often in hypopharynx (p = 0.035). Tumors with negative immunostaining of TWIST and SNAI1 in the stromal compartment were smaller (T1-2) (p = 0.008), less advanced (SI-II) (p = 0.031) and located more often in the oropharynx (p = 0.007). Patients with negative SNAI1 and TWIST immunostaining in tumor stroma had a better 5-year disease-specific and overall survival (p = 0.037 and p = 0.014 respectively).</p> <p>Conclusion</p> <p>TWIST and SNAI1 expression in stromal cells is associated with clinical and histopathological characteristics that indicate progressive disease. Negative expression of these EMT-promoting transcription factors predicts a better outcome.</p

    The mitochondrial DNA 4,977-bp deletion and its implication in copy number alteration in colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Qualitative and quantitative changes in human mitochondrial DNA (mtDNA) have been implicated in various cancer types. A 4,977 bp deletion in the major arch of the mitochondrial genome is one of the most common mutations associated with a variety of human diseases and aging.</p> <p>Methods</p> <p>We conducted a comprehensive study on clinical features and mtDNA of 104 colorectal cancer patients in the Wenzhou area of China. In particular, using a quantitative real time PCR method, we analyzed the 4,977 bp deletion and mtDNA content in tumor tissues and paired non-tumor areas from these patients.</p> <p>Results</p> <p>We found that the 4,977 bp deletion was more likely to be present in patients of younger age (≤65 years, p = 0.027). In patients with the 4,977 bp deletion, the deletion level decreased as the cancer stage advanced (p = 0.031). Moreover, mtDNA copy number in tumor tissues of patients with this deletion increased, both compared with that in adjacent non-tumor tissues and with in tumors of patients without the deletion. Such mtDNA content increase correlated with the levels of the 4,977 bp deletion and with cancer stage (p < 0.001).</p> <p>Conclusions</p> <p>Our study indicates that the mtDNA 4,977 bp deletion may play a role in the early stage of colorectal cancer, and it is also implicated in alteration of mtDNA content in cancer cells.</p

    Expression of DDX3 Is Directly Modulated by Hypoxia Inducible Factor-1 Alpha in Breast Epithelial Cells

    Get PDF
    DEAD box protein, DDX3, is aberrantly expressed in breast cancer cells ranging from weakly invasive to aggressive phenotypes and functions as an important regulator of cancer cell growth and survival. Here, we demonstrate that hypoxia inducible factor-1α is a transcriptional activator of DDX3 in breast cancer cells. Within the promoter region of the human DDX3 gene, we identified three putative hypoxia inducible factor-1 responsive elements. By luciferase reporter assays in combination with mutated hypoxia inducible factor-1 responsive elements, we determined that the hypoxia inducible factor-1 responsive element at position -153 relative to the translation start site is essential for transcriptional activation of DDX3 under hypoxic conditions. We also demonstrated that hypoxia inducible factor-1 binds to the DDX3 promoter and that the binding is specific, as revealed by siRNA against hypoxia inducible factor-1 and chromatin immunoprecipitation assays. Thus, the activation of DDX3 expression during hypoxia is due to the direct binding of hypoxia inducible factor-1 to hypoxia responsive elements in the DDX3 promoter. In addition, we observed a significant overlap in the protein expression pattern of hypoxia inducible factor-1α and DDX3 in MDA-MB-231 xenograft tumors. Taken together, our results demonstrate, for the first time, the role of DDX3 as a hypoxia-inducible gene that exhibits enhanced expression through the interaction of hypoxia inducible factor-1 with hypoxia inducible factor-1 responsive elements in its promoter region

    Prolonged Mechanical Ventilation Induces Cell Cycle Arrest in Newborn Rat Lung

    Get PDF
    Rationale: The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. Objective: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats. Methods: Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL.kg-1). Measurement and Main Results: Ventilation for 24 h (h) decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation) was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8-24 h of ventilation, while that of p27Kip1 was significantly increased. Mechanical ventilation for 24 h also increased levels of p57Kip2, decreased that of p16INK4a, while the levels of p21Waf/Cip1 and p15INK4b were unchanged. Increased p27Ki
    corecore