5 research outputs found

    Traditional and transgenic strategies for controlling tomato-infecting begomoviruses

    Full text link

    Management of whitefly transmitted viruses in openfield production systems

    No full text
    Whiteflies are a key pest of crops in open-field production throughout the tropics andsubtropics. This is due in large part to the long and diverse list of devastating plantviruses transmitted by these vectors. Open-field production provides many challengesto manage these viruses and in many cases adequate management has not been possible.Diseases caused by whitefly-transmitted viruses have become limiting factors inopen-field production of a wide range of crops, i.e., bean golden mosaic disease inbeans, tomato yellow leaf curl disease in tomato, cassava mosaic disease and cassavabrown streak disease in cassava, and cotton leaf crumple disease in cotton. While hostresistance has proven to be the most cost-effective management solution, few examplesof host resistance have been developed to date. The main strategy to limit the incidenceof virus-infected plants has been the application of insecticides to reduce vectorpopulations aided to some extent by the use of selected cultural practices. However,due to concerns about the effect of insecticides on pollinators, consumer demandfor reduced pesticide use, and the ability of the whitefly vectors to developinsecticide-resistance, there is a growing need to develop and deploy strategies thatdo not rely on insecticides. The reduction in pesticide use will greatly increase the needfor genetic resistance to more viruses in more crop plants. Resistance combined withselected IPM strategies could become a viable means to increase yields in crops producedin open fields despite the presence of whitefly-transmitted viruses. Whiteflies are a key pest of crops in open-field production throughout the tropics andsubtropics. This is due in large part to the long and diverse list of devastating plantviruses transmitted by these vectors. Open-field production provides many challengesto manage these viruses and in many cases adequate management has not been possible.Diseases caused by whitefly-transmitted viruses have become limiting factors inopen-field production of a wide range of crops, i.e., bean golden mosaic disease inbeans, tomato yellow leaf curl disease in tomato, cassava mosaic disease and cassavabrown streak disease in cassava, and cotton leaf crumple disease in cotton. While hostresistance has proven to be the most cost-effective management solution, few examplesof host resistance have been developed to date. The main strategy to limit the incidenceof virus-infected plants has been the application of insecticides to reduce vectorpopulations aided to some extent by the use of selected cultural practices. However,due to concerns about the effect of insecticides on pollinators, consumer demandfor reduced pesticide use, and the ability of the whitefly vectors to developinsecticide-resistance, there is a growing need to develop and deploy strategies thatdo not rely on insecticides. The reduction in pesticide use will greatly increase the needfor genetic resistance to more viruses in more crop plants. Resistance combined withselected IPM strategies could become a viable means to increase yields in crops producedin open fields despite the presence of whitefly-transmitted viruses. Whiteflies are a key pest of crops in open-field production throughout the tropics andsubtropics. This is due in large part to the long and diverse list of devastating plantviruses transmitted by these vectors. Open-field production provides many challengesto manage these viruses and in many cases adequate management has not been possible.Diseases caused by whitefly-transmitted viruses have become limiting factors inopen-field production of a wide range of crops, i.e., bean golden mosaic disease inbeans, tomato yellow leaf curl disease in tomato, cassava mosaic disease and cassavabrown streak disease in cassava, and cotton leaf crumple disease in cotton. While hostresistance has proven to be the most cost-effective management solution, few examplesof host resistance have been developed to date. The main strategy to limit the incidenceof virus-infected plants has been the application of insecticides to reduce vectorpopulations aided to some extent by the use of selected cultural practices. However,due to concerns about the effect of insecticides on pollinators, consumer demandfor reduced pesticide use, and the ability of the whitefly vectors to developinsecticide-resistance, there is a growing need to develop and deploy strategies thatdo not rely on insecticides. The reduction in pesticide use will greatly increase the needfor genetic resistance to more viruses in more crop plants. Resistance combined withselected IPM strategies could become a viable means to increase yields in crops producedin open fields despite the presence of whitefly-transmitted viruses. Whiteflies are a key pest of crops in open-field production throughout the tropics andsubtropics. This is due in large part to the long and diverse list of devastating plantviruses transmitted by these vectors. Open-field production provides many challengesto manage these viruses and in many cases adequate management has not been possible.Diseases caused by whitefly-transmitted viruses have become limiting factors inopen-field production of a wide range of crops, i.e., bean golden mosaic disease inbeans, tomato yellow leaf curl disease in tomato, cassava mosaic disease and cassavabrown streak disease in cassava, and cotton leaf crumple disease in cotton. While hostresistance has proven to be the most cost-effective management solution, few examplesof host resistance have been developed to date. The main strategy to limit the incidenceof virus-infected plants has been the application of insecticides to reduce vectorpopulations aided to some extent by the use of selected cultural practices. However,due to concerns about the effect of insecticides on pollinators, consumer demandfor reduced pesticide use, and the ability of the whitefly vectors to developinsecticide-resistance, there is a growing need to develop and deploy strategies thatdo not rely on insecticides. The reduction in pesticide use will greatly increase the needfor genetic resistance to more viruses in more crop plants. Resistance combined withselected IPM strategies could become a viable means to increase yields in crops producedin open fields despite the presence of whitefly-transmitted viruses. Whiteflies are a key pest of crops in open-field production throughout the tropics andsubtropics. This is due in large part to the long and diverse list of devastating plantviruses transmitted by these vectors. Open-field production provides many challengesto manage these viruses and in many cases adequate management has not been possible.Diseases caused by whitefly-transmitted viruses have become limiting factors inopen-field production of a wide range of crops, i.e., bean golden mosaic disease inbeans, tomato yellow leaf curl disease in tomato, cassava mosaic disease and cassavabrown streak disease in cassava, and cotton leaf crumple disease in cotton. While hostresistance has proven to be the most cost-effective management solution, few examplesof host resistance have been developed to date. The main strategy to limit the incidenceof virus-infected plants has been the application of insecticides to reduce vectorpopulations aided to some extent by the use of selected cultural practices. However,due to concerns about the effect of insecticides on pollinators, consumer demandfor reduced pesticide use, and the ability of the whitefly vectors to developinsecticide-resistance, there is a growing need to develop and deploy strategies thatdo not rely on insecticides. The reduction in pesticide use will greatly increase the needfor genetic resistance to more viruses in more crop plants. Resistance combined withselected IPM strategies could become a viable means to increase yields in crops producedin open fields despite the presence of whitefly-transmitted viruses. Whiteflies are a key pest of crops in open-field production throughout the tropics andsubtropics. This is due in large part to the long and diverse list of devastating plantviruses transmitted by these vectors. Open-field production provides many challengesto manage these viruses and in many cases adequate management has not been possible.Diseases caused by whitefly-transmitted viruses have become limiting factors inopen-field production of a wide range of crops, i.e., bean golden mosaic disease inbeans, tomato yellow leaf curl disease in tomato, cassava mosaic disease and cassavabrown streak disease in cassava, and cotton leaf crumple disease in cotton. While hostresistance has proven to be the most cost-effective management solution, few examplesof host resistance have been developed to date. The main strategy to limit the incidenceof virus-infected plants has been the application of insecticides to reduce vectorpopulations aided to some extent by the use of selected cultural practices. However,due to concerns about the effect of insecticides on pollinators, consumer demandfor reduced pesticide use, and the ability of the whitefly vectors to developinsecticide-resistance, there is a growing need to develop and deploy strategies thatdo not rely on insecticides. The reduction in pesticide use will greatly increase the needfor genetic resistance to more viruses in more crop plants. Resistance combined withselected IPM strategies could become a viable means to increase yields in crops producedin open fields despite the presence of whitefly-transmitted viruses

    Characterization of Tomato yellow spot virus, a novel tomato-infecting begomovirus in Brazil Caracterização do Tomato yellow spot virus, um novo begomovírus isolado de tomateiro no Brasil

    Get PDF
    The objective of this work was the biological and molecular characterization of a begomovirus detected in São Joaquim de Bicas, Minas Gerais, Brazil, named TGV-[Bi2], by determining its host range, complete nucleotide sequence and phylogenetic relationships with other begomoviruses. Biological characterization consisted of a host range study using either sap inoculation or particle bombardment as inoculation methods. The yellow spot virus can infect plants in Solanaceae and Amaranthaceae, including economically importat crops as sweet pepper, and weeds as Datura stramonium and Nicotiana silvestris. For the molecular characterization, the full-length genome (DNA-A and DNA-B) was amplified, cloned and completely sequenced. Sequence comparisons and phylogenetic analyses indicated that TGV-[Bi2] constitutes a novel begomovirus species named Tomato yellow spot virus (ToYSV), closely related to Sida mottle virus (SiMoV).<br>O objetivo deste trabalho foi a caracterização biológica e molecular de um begomovírus detectado em tomateiros em São Joaquim de Bicas, Minas Gerais, denominado TGV-[Bi2]. A caracterização biológica consistiu em teste de gama de hospedeiros, realizado por meio de inoculação via extrato foliar tamponado ou bombardeamento de partículas. O isolado TGV-[Bi2] infecta plantas das famílias Solanaceae e Amaranthaceae, inclusive espécies economicamente importantes como o pimentão, e algumas plantas daninhas como Datura stramonium e Nicotiana silvestris. A caracterização molecular consistiu na clonagem e seqüenciamento de seu genoma completo (DNA-A e DNA-B). A comparação de seqüências e análise filogenética indicaram que o TGV-[Bi2] constitui uma nova espécie de begomovírus, denominada Tomato yellow spot virus (ToYSV), filogeneticamente relacionado ao Sida mottle virus (SiMoV)
    corecore