3 research outputs found

    Chemically-induced Neurite-like Outgrowth Reveals Multicellular Network Function in Patient-derived Glioblastoma Cells

    Get PDF
    Tumor stem cells and malignant multicellular networks have been separately implicated in the therapeutic resistance of Glioblastoma Multiforme (GBM), the most aggressive type of brain cancer in adults. We show that small molecule inhibition of RHO-associated serine/threonine kinase (ROCKi) significantly promoted the outgrowth of neurite-like cell projections in cultures of heterogeneous patient-derived GBM stem-like cells. These projections formed de novo -induced cellular network (iNet) ‘webs’, which regressed after withdrawal of ROCKi. Connected cells within the iNet web exhibited long range calcium signal transmission, and significant lysosomal and mitochondrial trafficking. In contrast to their less-connected vehicle control counterparts, iNet cells remained viable and proliferative after high-dose radiation. These findings demonstrate a link between ROCKi-regulated cell projection dynamics and the formation of radiation-resistant multicellular networks. Our study identifies means to reversibly induce iNet webs ex vivo , and may thereby accelerate future studies into the biology of GBM cellular networks

    Prostate cancer stem cells: do they have a basal or luminal phenotype?

    No full text
    The prostate is a luminal secretory tissue whose function is regulated by male sex hormones. Castration produces involution of the prostate to a reversible basal state, and as the majority of prostate cancers also have a luminal phenotype, drug-induced castration is a front line therapy. It has therefore been assumed that the tumor arises from transformation of a luminal progenitor cell. Here, we demonstrate that a minority basal “cancer stem cell” (CSC) population persists in primary human prostate cancers, as in normal prostate, serving as a reservoir for tumor recurrence after castration therapy. While the CSCs exhibit a degree of phenotypic fluidity from different patients, the tumor-initiating cells in immunocompromised mice express basal markers (such as p63), but do not express androgen receptor (AR) or markers of luminal differentiation (PSA, PAP) when freshly fractionated from human tissues or following culture in vitro. Estrogen receptors α and ÎČ and AR are transcriptionally active in the transit amplifying (TA) cell (the progeny of SC). However, AR protein is consistently undetectable in TA cells. The prostate-specific TMPRSS2 gene, while upregulated by AR activity in luminal cells, is also transcribed in basal populations, confirming that AR acts as an expression modulator. Selected cells with basal phenotypes are tumor initiating, but the resultant tumors are phenotypically intermediate, with focal expression of AR, AMACR, and p63. In vitro differentiation experiments, employing lentivirally transduced SCs with a luminal (PSA-probasin) promoter regulating a fluorescent indicator gene, confirm that the basal SCs are the source of luminal progeny

    DS_DISC764623 – Supplemental material for Spontaneous Glioblastoma Spheroid Infiltration of Early-Stage Cerebral Organoids Models Brain Tumor Invasion

    No full text
    <p>Supplemental material, DS_DISC764623 for Spontaneous Glioblastoma Spheroid Infiltration of Early-Stage Cerebral Organoids Models Brain Tumor Invasion by BĂĄrbara da Silva, Ryan K. Mathew, Euan S. Polson, Jennifer Williams, and Heiko Wurdak in SLAS Discovery</p
    corecore