99 research outputs found

    Renormalization Group and Universality

    Full text link
    It is argued that universality is severely limited for models with multiple fixed points. As a demonstration the renormalization group equations are presented for the potential and the wave function renormalization constants in the O(N)O(N) scalar field theory. Our equations are superior compared with the usual approach which retains only the contributions that are non-vanishing in the ultraviolet regime. We find an indication for the existence of relevant operators at the infrared fixed point, contrary to common expectations. This result makes the sufficiency of using only renormalizable coupling constants in parametrizing the long distance phenomena questionable.Comment: 32pp in plain tex; revised version to appear in PR

    Non-perturbative thermal flows and resummations

    Get PDF
    We construct a functional renormalisation group for thermal fluctuations. Thermal resummations are naturally built in, and the infrared problem of thermal fluctuations is well under control. The viability of the approach is exemplified for thermal scalar field theories. In gauge theories the present setting allows for the construction of a gauge-invariant thermal renormalisation group.Comment: 16 pages, eq (38) added to match published versio

    Quantum phenomena inside a black hole: quantization of the scalar field iniside horizon in Schwarzschild spacetime

    Full text link
    We discuss the problem of the quantization and dynamic evolution of a scalar free field in the interior of a Schwarzschild black hole. A unitary approach to the dynamics of the quantized field is proposed: a time-dependent Hamiltonian governing the Heisenberg equations is derived. It is found that the system is represented by a set of harmonic oscillators coupled via terms corresponding to the creation and annihilation of pairs of particles and that the symmetry properties of the spacetime, homogeneity and isotropy are obeyed by the coupling terms in the Hamiltonian. It is shown that Heisenberg equations for annihilation and creation operators are transformed into ordinary differential equations for appropriate Bogolyubov coefficients. Such a formulation leads to a general question concerning the possibility of gravitationally driven instability, that is however excluded in this case.Comment: 12 page

    Current-density functional for disordered systems

    Get PDF
    The effective action for the current and density is shown to satisfy an evolution equation, the functional generalization of Callan-Symanzik equation. The solution describes the dependence of the one-particle irreducible vertex functions on the strength of the quenched disorder and the annealed Coulomb interaction. The result is non-perturbative, no small parameter is assumed. The a.c. conductivity is obtained by the numerical solution of the evolution equation on finite lattices in the absence of the Coulomb interaction. The static limit is performed and the conductivity is found to be vanishing beyond a certain threshold of the impurity strength.Comment: final version, 28 pages, 17 figures, to appear in Phys. Rev.

    Chronological Inversion Method for the Dirac Matrix in Hybrid Monte Carlo

    Full text link
    In Hybrid Monte Carlo simulations for full QCD, the gauge fields evolve smoothly as a function of Molecular Dynamics time. Here we investigate improved methods of estimating the trial or starting solutions for the Dirac matrix inversion as superpositions of a chronological sequence of solutions in the recent past. By taking as the trial solution the vector which minimizes the residual in the linear space spanned by the past solutions, the number of conjugate gradient iterations per unit MD time is decreased by at least a factor of 2. Extensions of this basic approach to precondition the conjugate gradient iterations are also discussed.Comment: 35 pages, 18 EPS figures A new "preconditioning" method, derived from the Chronological Inversion, is described. Some new figures are appended. Some reorganization of the material has taken plac

    From quantum to classical dynamics: The relativistic O(N)O(N) model in the framework of the real-time functional renormalization group

    Get PDF
    We investigate the transition from unitary to dissipative dynamics in the relativistic O(N)O(N) vector model with the λ(φ2)2\lambda (\varphi^{2})^{2} interaction using the nonperturbative functional renormalization group in the real-time formalism. In thermal equilibrium, the theory is characterized by two scales, the interaction range for coherent scattering of particles and the mean free path determined by the rate of incoherent collisions with excitations in the thermal medium. Their competition determines the renormalization group flow and the effective dynamics of the model. Here we quantify the dynamic properties of the model in terms of the scale-dependent dynamic critical exponent zz in the limit of large temperatures and in 2≤d≤42 \leq d \leq 4 spatial dimensions. We contrast our results to the behavior expected at vanishing temperature and address the question of the appropriate dynamic universality class for the given microscopic theory.Comment: 32 pages, 12 captioned figures; revised and extended version accepted for publication in PR

    The antiferromagnetic phi4 Model, II. The one-loop renormalization

    Full text link
    It is shown that the four dimensional antiferromagnetic lattice phi4 model has the usual non-asymptotically free scaling law in the UV regime around the chiral symmetrical critical point. The theory describes a scalar and a pseudoscalar particle. A continuum effective theory is derived for low energies. A possibility of constructing a model with a single chiral boson is mentioned.Comment: To appear in Phys. Rev.

    Staggered versus overlap fermions: a study in the Schwinger model with Nf=0,1,2N_f=0,1,2

    Full text link
    We study the scalar condensate and the topological susceptibility for a continuous range of quark masses in the Schwinger model with Nf=0,1,2N_f=0,1,2 dynamical flavors, using both the overlap and the staggered discretization. At finite lattice spacing the differences between the two formulations become rather dramatic near the chiral limit, but they get severely reduced, at the coupling considered, after a few smearing steps.Comment: 15 pages, 7 figures, v2: 1 ref corrected, minor change

    Chiral Symmetry Restoration at Finite Temperature and Chemical Potential in the Improved Ladder Approximation

    Full text link
    The chiral symmetry of QCD is studied at finite temperature and chemical potential using the Schwinger-Dyson equation in the improved ladder approximation. We calculate three order parameters; the vacuum expectation value of the quark bilinear operator, the pion decay constant and the quark mass gap. We have a second order phase transition at the temperature Tc=169T_c=169 MeV along the zero chemical potential line, and a first order phase transition at the chemical potential ÎĽc=598\mu_c=598 MeV along the zero temperature line. We also calculate the critical exponents of the three order parameters.Comment: 16 pages + 10 uuencoded eps figures, LaTe

    Invariant measure in hot gauge theories

    Get PDF
    We investigate properties of the invariant measure for the A0A_0 gauge field in finite temperature gauge theories both on the lattice and in the continuum theory. We have found the cancellation of the naive measure in both cases. The result is quite general and holds at any finite temperature. We demonstrate, however, that there is no cancellation at any temperature for the invariant measure contribution understood as Z(N) symmetrical distribution of gauge field configurations. The spontaneous breakdown of Z(N) global symmetry is entirely due to the potential energy term of the gluonic interaction in the effective potential. The effects of this measure on the effective action, mechanism of confinement and A0A_0 condensation are discussed.Comment: Latex file, 65.5kB, no figure
    • …
    corecore