18 research outputs found

    Characterizing Cardiac Electrophysiology during Radiofrequency Ablation : An Integrative Ex vivo, In silico, and In vivo Approach

    Get PDF
    Catheter ablation is a major treatment for atrial tachycardias. Hereby, the precise monitoring of the lesion formation is an important success factor. This book presents computational, wet-lab, and clinical studies with the aim of evaluating the signal characteristics of the intracardiac electrograms (IEGMs) recorded around ablation lesions from different perspectives. The detailed analysis of the IEGMs can optimize the description of durable and complex lesions during the ablation procedure

    Simulation of intracardiac electrograms around acute ablation lesions

    Get PDF
    Radiofrequency ablation (RFA) is a widely used clinical treatment for many types of cardiac arrhythmias. However, nontransmural lesions and gaps between linear lesions often lead to recurrence of the arrhythmia. Intracardiac electrograms (IEGMs) provide real-time information regarding the state of the cardiac tissue surrounding the catheter tip. Nevertheless, the formation and interpretation of IEGMs during the RFA procedure is complex and yet not fully understood. In this in-silico study, we propose a computational model for acute ablation lesions. Our model consists of a necrotic scar core and a border zone, describing irreversible and reversible temperature induced electrophysiological phenomena. These phenomena are modeled by varying the intra- and extracellular conductivity of the tissue as well as a regulating zone factor. The computational model is evaluated regarding its feasibility and validity. Therefore, this model was compared to an existing one and to clinical measurements of five patients undergoing RFA. The results show that the model can indeed be used to recreate IEGMs. We computed IEGMs arising from complex ablation scars, such as scars with gaps or two overlapping ellipsoid scars. For orthogonal catheter orientation, the presence of a second necrotic core in the near-field of a punctiform acute ablation lesion had minor impact on the resulting signal morphology. The presented model can serve as a base for further research on the formation and interpretation of IEGMs

    Integration of a semi-automatic in-vitro RFA procedure into an experimental setup

    Get PDF
    Radiofrequency ablation (RFA) is a standard clinical procedure for treating many cardiac arrhythmias. In order to increase the success rate of this treatment, the evaluation of lesion development with the help of intracardiac electrogram (EGM) criteria has to be improved further. We are investigating in-vitro the electrophysiological characteristics of cardiac tissue by using fluorescence-optical and electrical techniques. In this project, it is intended to create ablation lesions under defined conditions in rat atria or ventricle and to determine the electrical activity in the myocardium surrounding these lesions less than 1 s after the ablation. Therefore, we developed a semi-automatic RFA procedure, which was integrated into an existing experimental setup. Firstly, a controllable protection circuit board was designed to galvanically isolate the sensitive amplifiers for measuring extracellular potentials during the ablation. Secondly, a real-time system was implemented to control and to autonomously monitor the RFA procedure. We verified each component as well as the different sequences of the RFA procedure. In conclusion, the expanded setup will be used in future in-vitro experiments to determine new EGM criteria to assess lesion formation during the RFA procedure

    Circle Method for Robust Estimation of Local Conduction Velocity High-Density Maps From Optical Mapping Data: Characterization of Radiofrequency Ablation Sites

    Get PDF
    Conduction velocity (CV) slowing is associated with atrial fibrillation (AF) and reentrant ventricular tachycardia (VT). Clinical electroanatomical mapping systems used to localize AF or VT sources as ablation targets remain limited by the number of measuring electrodes and signal processing methods to generate high-density local activation time (LAT) and CV maps of heterogeneous atrial or trabeculated ventricular endocardium. The morphology and amplitude of bipolar electrograms depend on the direction of propagating electrical wavefront, making identification of low-amplitude signal sources commonly associated with fibrotic area difficulty. In comparison, unipolar electrograms are not sensitive to wavefront direction, but measurements are susceptible to distal activity. This study proposes a method for local CV calculation from optical mapping measurements, termed the circle method (CM). The local CV is obtained as a weighted sum of CV values calculated along different chords spanning a circle of predefined radius centered at a CV measurement location. As a distinct maximum in LAT differences is along the chord normal to the propagating wavefront, the method is adaptive to the propagating wavefront direction changes, suitable for electrical conductivity characterization of heterogeneous myocardium. In numerical simulations, CM was validated characterizing modeled ablated areas as zones of distinct CV slowing. Experimentally, CM was used to characterize lesions created by radiofrequency ablation (RFA) on isolated hearts of rats, guinea pig, and explanted human hearts. To infer the depth of RFA-created lesions, excitation light bands of different penetration depths were used, and a beat-to-beat CV difference analysis was performed to identify CV alternans. Despite being limited to laboratory research, studies based on CM with optical mapping may lead to new translational insights into better-guided ablation therapies

    Automatic feature extraction algorithms for the assessment of in-vitro electrical recordings of rat myocardium with ablation lesions

    No full text
    Cardiac arrhythmias are a widely spread disease in industrialized countries. A common clinical treatment for this disease is radiofrequency ablation (RFA), in which high frequency alternating current creates a lesion on the myocardium. However, the formation of the lesion is not entirely understood. To obtain more information about ablation lesions (ALs) and their electrophysiological properties, we established an in-vitro setup to record electrical activity of rat myocardium. Electrical activity is measured by a circular shaped multielectrode array. This work was focused to gain more information by developing algorithms to process the measured electrical signals to collect different features, which may allow us to characterize an AL. First, pacing artefacts were detected and blanked. Subsequently, data were filtered. Afterwards, activations in atrial signals were detected using a non-linear energy operator (NLEO) and templates of these activations were generated. Finally, we determined different features on each activation in order to evaluate changes of unipolar as well as bipolar electrograms and considered these features before and after ablation. In conclusion, the majority of the signal features delivered significant differences between normal tissue and lesion. Among others, a reduction in peak to peak amplitude and a diminished spectral power in the band 0 to 100 Hz may be useful indicators for AL. These criteria should be verified in future studies with the aim of estimating indirectly the formation of a lesion
    corecore