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Automatic lung segmentation in the presence
of alveolar collapse
Abstract: Lung ventilation and perfusion analyses using chest
imaging methods require a correct segmentation of the lung to
offer anatomical landmarks for the physiological data. An au-
tomatic segmentation approach simplifies and accelerates the
analysis. However, the segmentation of the lungs has shown to
be difficult if collapsed areas are present that tend to share si-
milar gray values with surrounding non-pulmonary tissue. Our
goal was to develop an automatic segmentation algorithm that
is able to approximate dorsal lung boundaries even if alveo-
lar collapse is present in the dependent lung areas adjacent to
the pleura. Computed tomography data acquired in five supine
pigs with injured lungs were used for this purpose. First, he-
althy lung tissue was segmented using a standard 3D region
growing algorithm. Further, the bones in the chest wall sur-
rounding the lungs were segmented to find the contact points
of ribs and pleura. Artificial boundaries of the dorsal lung were
set by spline interpolation through these contact points. Seg-
mentation masks of the entire lung including the collapsed re-
gions were created by combining the splines with the segmen-
tation masks of the healthy lung tissue through multiple mor-
phological operations. The automatically segmented images
were then evaluated by comparing them to manual segmen-
tations and determining the Dice similarity coefficients (DSC)
as a similarity measure. The developed method was able to
accurately segment the lungs including the collapsed regions
(DSCs over 0.96).
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1 Introduction

Lung ventilation and perfusion analyses using chest imaging
methods require an anatomically correct segmentation of the
organ. In clinical practice, computed tomography (CT) scans
are performed for this purpose and the acquired images need to
be manually segmented to offer anatomical landmarks for the
physiological data. Due to the large amount of imaging data,
an automatic segmentation approach simplifies and accelera-
tes the analysis. However, the segmentation of the lungs has
shown to be difficult if collapsed areas are present that tend
to share similar gray values with surrounding non-pulmonary
tissue. Existing automatic segmentation algorithms for healthy
lungs are not precise in the presence of lesions near the pleura
[1]. We present an automatic segmentation approach that is
able to approximate dorsal lung boundaries even if alveolar
collapse is present in the dependent lung areas adjacent to the
pleura. To develop the segmentation algorithm, we used CT
data acquired in pigs with regionally injured lungs from an ex-
perimental study [2] where the data were used as reference for
lung ventilation and perfusion measurements with electrical
impedance tomography (EIT).

2 Methods

The study from which the CT data was gathered was approved
by the University of Iowa committee for animal care and ad-
hered to the guidelines on animal experimentation. Regional
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Figure 1: Processing steps of the segmentation approach.
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lung injury was induced in two adjacent sublobar segments
of the right lung by repetitive saline lavage or endotoxin in-
jury. MathWorks MATLAB R2016b software was used for the
implementation of the automatic segmentation algorithm. The
given CT data sets (DICOM format) of five supine pig tho-
races consisted of slices with resolutions of 512 × 512 pixels
and slice numbers of approx. 600 (slice thickness = 0.75 mm).
Figure 1 shows the multiple processing steps of the segmen-
tation approach. The complete segmentation mask was crea-
ted by combining the segmentation results of the healthy lung
area (obtained through 3D region growing (RG) with automa-
tic seed point selection) and the dorsal lung boundary. The lat-
ter had to be calculated using a spline interpolation by seg-
menting the bones surrounding the lungs and then finding the
contact points of rib cage and pleura.

2.1 Bone segmentation

Bone segments in the chest wall were segmented for deter-
mining the contact points of bones and pleura. First, a global
threshold was applied. 3D RG had to be performed for seg-
menting the ribcage including the spine at once. However, con-
trast medium in the heart and vessels had similar gray values
as bones and was sometimes touching ventral bones (especi-
ally the sternum), hence additional processing steps had to be
inserted to remove the unwanted pixels:
A parabola was calculated which contained the upper corner
pixels of the image (P1 = (0j0), P2 = (xmaxj0)). The apex
of the parabola was chosen as P3 = ( xmax2 jchealthy,y) with
chealthy,y as the y-coordinate of the previously segmented he-
althy lung area centroid Chealthy (see Figure 2). All white
pixels above the parabola were set to 0 (black). Before starting
the 3D RG, morphological closing was performed in order to
close small gaps between vertebra and rib segments. This en-
sured that all ribs were segmented during RG with a single
seed point selection. Finally, the seed point for 3D RG was se-
lected automatically as a random pixel from the largest bone
region.

2.2 Approximation of dorsal lung
boundary

The contact points of bones and pleura were determined
through the following steps:
The centroid of the entire segmented healthy lung tissue re-
gion in a slice Chealthy and the centroids of each of the i re-
gions in the segmented bone image Cbone,i were located. For
each of the j bone regions that had a significant size (thres-
hold = 20 % of mean region area), a pixel-value cross-section
vector gcs,j was created, which consisted of all pixel values in

Figure 2: Thresholded image (white) with parabola through P3
(dotted line). The previously segmented healthy lung tissue is
visualized in gray (left). Final bone segmentation result (right).

the bone image along the line connecting Chealthy and Cbone,i.
Each gcs,j was searched for the first nonzero element (starting
at Chealthy). These pixels were saved as contact points of bone
and pleura (see Figure 3 (a)). In many cases, the region area
from the spinous process was exceeding the 20 % threshold.
In these cases, gcs,j was crossing the vertebra region and the
first nonzero element found was on the vertebra.

Depending on the bone region constellation in a slice, the
deviation of the spline from the pleura would be high, if the
distance between neighboring dorsal bone segments was too
large. Thus, all previously found contact points from slice n-
15 to n+15 were added to slice n (see Figure 3 (b)). It was
assumed that the shape of the dorsal lung boundary did not sig-
nificantly change within this range of 31 slices (total thickness
of 22.5 mm). However, the bone segments changed their posi-
tion far enough to obtain a sufficient amount of extra contact
points between two neighboring bone regions with large dis-
tance.
The points were divided into two sets: Pn contained points
found in slice n, the remaining points (found on slice n-15
to n+15 and later added to slice n) were included in Pr. In
a next step, redundant points were excluded to improve the
smoothness of the spline. The exclusion was carried out con-
sidering following criteria (see Figure 3 (c)):
Points within bone regions of slice n (surrounded by white
pixels only) were dismissed. If two points from Pn were too
close to each other (distance < d1), the one with the larger dis-
tance to Chealthy was dismissed. Points from Pr too close to
points from Pn were removed (distance < d2). If two points
from Pr were too close to each other (distance < d3), the one
with the larger distance to Chealthy was removed.
The distances d1, d2 and d3 were chosen via empirical analy-
sis. Points out of Pn had the least deviation from the real lung
boundary. Therefore, d2 was set relatively high, since points
from other slices (Pr) would only falsify the boundary in the
environment of points from Pn. d1 and d3 were chosen relati-
vely small values as the points were not necessarily deviating
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Figure 3: (a): Bone and Pleura contact points. (b): Additionally added contact points. (c): Contact point after redundant points were re-
moved. (d): Spline interpolation through given contact points. (e): Final segmentation mask including collapsed regions.

significantly from the boundary within this distance, but points
that close were counterproductive for the smoothness of the
spline.

Finally, a natural cubic spline was set through the k gi-
ven contact points Pcontact,k (see Figure 3 (d)). The MAT-
LAB function cscvn was used to create a natural cubic spline
through Pcontact,k. This function uses E. Lee’s centripetal
scheme [3] to chose the parameter value t(k) for the kth point.

2.3 Segmentation mask

Finally, the segmentation masks of the healthy lung tissue had
to be combined with the obtained splines to receive segmen-
tation masks for the whole lung including collapsed areas.
With the segmentation mask of healthy lung tissue as the ini-
tial image, this was achieved as follows: Morphological clo-
sing was performed to close small interruptions in the healthy
lung tissue regions. Pixel values along the spline were set to 1
(white). Horizontal and vertical rows of white pixels were set
through the centroid of the healthy lung tissue region to gua-
rantee that performing morphological filling in the next step
would fill the gap between the spline and the segmentation
mask of the healthy lung tissue. After filling, morphological
opening was performed to remove the excess spline and li-
nes outside the lung region. Bone regions of the previous five
and upcoming 15 slices (slice numbers increasing in caudal
direction) were subtracted, then the image matrix was thres-
holded for values ≥ 0. This removed excess parts of the seg-
mentation mask caused by the spline reaching far outside the
lungs. The unsymmetrical selection of the slice numbers to
subtract the bone regions was due to the shape of the bone re-
gions and their outwards movement with increasing slice num-
bers. Finally, morphological opening was performed to smooth
the dorsal edge of the mask (see Figure 3 (e)).

3 Results

The automatic segmentation algorithm was tested on data sets
from five different swines. Animal 1, 3, 5 and 9 included

lavage injury, animal 4 included endotoxin injury [2]. Manual
segmentations performed by physicians were available for a
varying number of slices around the EIT belt level of each
data set. These were used as reference segmentations to evalu-
ate the results of the automatic algorithm. Three slices of each
animal were considered for the comparison since this was the
highest number of available reference segmentations for every
animal.
The Dice similarity coefficient (DSC) was used as a similarity
measure to determine the accuracy of the segmentations [4].
With Aa as the area of the segmentation mask from the auto-
matic algorithm, Aref as the area of the reference manual seg-
mentation by the physician and Aa \ Aref as the overlapping
area of the two segmentation masks, the DSC was calculated
as:

DSC(Aa , Aref ) =
2(Aa \ Aref )
Aa + Aref

(1)

The DSCs were calculated for the entire segmentation masks
and for their quadrants (numbering goes counter-clockwise
starting from the upper right quadrant) to obtain additional in-
formation about the similarity in different image regions (see
Table 1). Figure 4 shows a comparison of an automatically
segmented slice and its manually segmented reference.

Dice similarity coefficients
Total Quadrant

I II III IV

Animal 1 0.9805 0.9857 0.9800 0.9785 0.9778
Animal 2 0.9771 0.9795 0.9855 0.9651 0.9790
Animal 3 0.9685 0.9646 0.9562 0.9737 0.9778
Animal 4 0.9773 0.9770 0.9743 0.9757 0.9820
Animal 5 0.9830 0.9801 0.9857 0.9787 0.9867

µ 0.9758 0.9694 0.9739 0.9770 0.9818
σ 0.0050 0.0101 0.0122 0.0070 0.0043

Table 1: DSCs of automatic and manual reference segmentation
for the total segmentation mask and their quadrants masks for the
five studied animals (one example slice per animal). Means µ and
standard deviations σ of all DSCs determined in the study.
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Figure 4: Automatic segmentation result (left) and manually seg-
mented reference (right) of Animal 2. DSCtotal = 0.9771

4 Discussion

The developed method proved to deliver solid results for the
parts of the lungs where manually segmented reference ima-
ges were available (mediastinum was included). Automatic
segmentations of the selected slices were very similar to the
manual reference segmentations with the total DSCs always
higher than 0.96. It is noticeable that the mean DSCs of qua-
drant III and IV and their variance were higher than the other
two. Considering that the ventral lung boundary was found by
RG, this seems to be contradictory at first. The ventral lungs
did not contain many lesions in our data, hence the lungs had
a clear ventral boundary with a clearly visible gray value dif-
ference. This outcome was due to two reasons:
The perimeters of the segmentations masks deviated in the he-
art region. The automatic algorithm detected the darker part
of the heart as lung boundary, the gray value fell below the
threshold. Further, the manual segmentations were not precise
in those regions. These parts with distinct gray value differen-
ces will always be detected more accurately with RG. Nevert-
heless, the manual segmentations had to be regarded as the
ground truth since no other reference was available.

The reference segmentations originated from caudal regi-
ons of the lungs. These parts of the thorax were captured by
EIT and CT in the study by Elke et al. [2]. Particularly in these
regions of the lungs the automatic algorithm performed best.
Moving up to the apex of the lungs, the algorithm became in-
accurate or failed totally. The bone segments did not provide
suitable interpolation points as the ribcage got narrower. Pro-
blems appeared if extensive lesions were in the ventral regions
of the lungs as the ventral boundary was found by RG only.

The algorithm either requires baseline scans or a data set
of larger parts of the lung. It can not be performed on single sli-
ces since 3D segmentation algorithms are used and the spline
calculation of each slice relies on information of subsequent
slices.

Mesanovic et al. introduced an automatic algorithm for
lung segmentation which worked imprecisely if lesions were
attached to the pleura [1]. This is comparable to the lesion dis-
tribution in our data set. Xin et al. developed a semi-automatic
registration-based multilandmark method [5] which needed
previously (in their case manually) segmented references of
healthy lungs. In contrast, our developed algorithm does not
need any comparative references (segmentations of the healthy
lungs), it works automatically with the data sets of the injured
lungs.
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