2,857 research outputs found

    Impact perforation testing of stab-resistant armour materials

    Get PDF
    This paper describes the development of a method for the investigation and comparison of materials for use in stab resistant body armour. A number of polymer composite panels of different thicknesses and construction have been tested. A dynamic test which simulated the real threat has been used and the results compared to a simpler quasi-static test that might be used in initial materials selection. The materials tested were glass-epoxy, and glass-nylon composite panels of several thicknesses between 1.8 and 5.8mm. Additional tests were also performed on similar composites containing tungsten wires. An accelerated instrumented drop-tower was used to drive a knife through composite panels and record the force resisting penetration by the knife. The final penetration of the knife through the armour into a soft backing was also measured. For comparison,a similar geometry quasi-static test was carried out on the same specimens. It was found that energy absorbtion took the form of an initial resistance to perforation and then by a resistance to further penetration. This is thought to stem from resistance to cutting ofthe panel material and gripping of the knife blade. The energy required to produce a given penetration in dynamic tests was found to be in good agreement with the penetration achieved at similar energies under quasi-static conditions. For the materials tested there was no significant difference between the penetration resistance of single or two layer systems. The penetration achieved through a panel of a given material was approximately proportional to the inverse square of the panel's thickness. The relative performance of different armour materials was assessed by plotting the energy required to penetrate a fixed distance against the areal density of the panel

    Investigating the evolution of apoptosis in malaria parasites: the importance of ecology

    Get PDF
    Apoptosis is a precisely regulated process of cell death which occurs widely in multicellular organisms and is essential for normal development and immune defences. In recent years, interest has grown in the occurrence of apoptosis in unicellular organisms. In particular, as apoptosis has been reported in a wide range of species, including protozoan malaria parasites and trypanosomes, it may provide a novel target for intervention. However, it is important to understand when and why parasites employ an apoptosis strategy before the likely long-and short-term success of such an intervention can be evaluated. The occurrence of apoptosis in unicellular parasites provides a challenge for evolutionary theory to explain as organisms are expected to have evolved to maximise their own proliferation, not death. One possible explanation is that protozoan parasites undergo apoptosis in order to gain a group benefit from controlling their density as this prevents premature vector mortality. However, experimental manipulations to examine the ultimate causes behind apoptosis in parasites are lacking. In this review, we focus on malaria parasites to outline how an evolutionary framework can help make predictions about the ecological circumstances under which apoptosis could evolve. We then highlight the ecological considerations that should be taken into account when designing evolutionary experiments involving markers of cell death, and we call for collaboration between researchers in different fields to identify and develop appropriate markers in reference to parasite ecology and to resolve debates on terminology.Host-parasite interactio

    Evolutionary ecology of transmission strategies in protozoan parasites

    Get PDF
    In recent years there has been growing interest in applying frameworks from evolutionary ecology to understand infectious disease. It is becoming increasingly apparent that the interactions between parasites within the host environment can shape parasite phenotypes underlying infection dynamics and transmission. However, the spread of the disease will crucially depend on both within-host and between-host dynamics. Bridging these scales is challenging and for vector borne parasites, such as malaria and trypanosomes, will involve gaining a much better understanding of infection dynamics both within the host and vector. I apply evolutionary ecology frameworks including social evolution, life history theory, and phenotypic plasticity to investigate how parasite phenotypes are shaped by within-host and within-vector environments and examine the implications for inhost survival and between-host transmission. Specifically, I demonstrate that; 1. Within the host; i. In accordance with theory malaria parasites detect and respond to the presence of competitors by altering reproductive strategies to maximise in-host survival. Furthermore, these strategies are fine tuned in response to variation in the within-host environment, including the availability of resources. ii. The reproductive investment strategies of malaria parasites can be applied to explain the transmission strategies of African trypanosomes. This shows how general evolutionary frameworks can be applied to a novel parasite species and demonstrates the explanatory power of an evolutionary approach. iii. The complexity of the within-host environment poses specific statistical challenges for examining the temporal dynamics of parasite life history traits that are often not adequately dealt with, potentially leading to type 1 errors. Methods to evaluate levels of autocorrelation and how to deal with it are applied to datasets of within-infection dynamics. 2. Within the vector; i. Malaria parasites undergo programmed, apoptotic cell death. The occurrence of, and putative explanation for, apoptosis in protozoan parasites is controversial. I demonstrate the importance of quantitative methods and parasite ecology in testing the evolutionary explanations for parasite apoptosis. ii. The links between within-host dynamics and within-vector dynamics are complex and can lead to counter-intuitive implications for the success of between-host transmission. Density-dependent processes result in diverse fitness costs to parasites of crowding. More broadly, these processes could explain why parasites undergo apoptosis. In general my results demonstrate, across vertebrate hosts and insect vectors, how the interactions between parasites and with their environment shapes traits important for the transmission of infectious disease

    Valtion aluehallintovirastot ja niiden ylijohtajat: Pohjoiseurooppalainen analogia Ranskan prefeikteille

    Get PDF
    This chapter examines the closest Finnish analogy to the French function of the prefect. In Finland, since 2010, this function has been vested in the institution of the State Regional Administrative Agency (SRAA, aluehallintovirasto, ‘AVI’). There are six SRAAs, each headed by a Chief Director (ylijohtaja) nominated by the government. The study had four main findings. First, despite ambiguity in institutional terminology, classifications, boundaries and identities concerning the SRAA, one can discern few true functional or structural deficiencies. Second, the SRAA is a hybrid between an institution of its own and a territorial representative of either government ministries or government agencies, to which is related the fact that each SRAA has both responsibilities concerning its territory and nationwide responsibilities. Third, tensions between performance and institutional legitimation prevail in the institution of the SRAA, but again without serious deficiencies. Fourth, the 2010 substitution of the SRAA for the former Province comprised a radical institutional change. The 2015–2019 Finnish government intended to abolish the SRAAs, but the subsequent government abandoned that reform, and ultimately by mid-2020 it became clear that the institution of the SRAA was here to stay after all.Peer reviewe

    The Meaning of Death: Evolution and Ecology of Apoptosis in Protozoan Parasites

    Get PDF
    The discovery that an apoptosis-like, programmed cell death (PCD) occurs in a broad range of protozoan parasites offers novel therapeutic tools to treat some of the most serious infectious diseases of humans, companion animals, wildlife, and livestock. Whilst apoptosis is an essential part of normal development, maintenance, and defence in multicellular organisms, its occurrence in unicellular parasites appears counter-intuitive and has proved highly controversial: according to the Darwinian notion of “survival of the fittest”, parasites are expected to evolve strategies to maximise their proliferation, not death. The prevailing, and untested, opinion in the literature is that parasites employ apoptosis to “altruistically” self-regulate the intensity of infection in the host/vector. However, evolutionary theory tells us that at most, this can only be part of the explanation, and other non-mutually exclusive hypotheses must also be tested. Here, we explain the evolutionary concepts that can explain apoptosis in unicellular parasites, highlight the key questions, and outline the approaches required to resolve the controversy over whether parasites “commit suicide”. We highlight the need for integration of proximate and functional approaches into an evolutionary framework to understand apoptosis in unicellular parasites. Understanding how, when, and why parasites employ apoptosis is central to targeting this process with interventions that are sustainable in the face of parasite evolution
    corecore