70 research outputs found

    Transcriptome analysis of peripheral blood mononuclear cells in human subjects following a 36 h fast provides evidence of effects on genes regulating inflammation, apoptosis and energy metabolism

    Get PDF
    There is growing interest in the potential health benefits of diets that involve regular periods of fasting. While animal studies have provided compelling evidence that feeding patterns such as alternate-day fasting can increase longevity and reduce incidence of many chronic diseases, the evidence from human studies is much more limited and equivocal. Additionally, although several candidate processes have been proposed to contribute to the health benefits observed in animals, the precise molecular mechanisms responsible remain to be elucidated. The study described here examined the effects of an extended fast on gene transcript profiles in peripheral blood mononuclear cells from ten apparently healthy subjects, comparing transcript profiles after an overnight fast, sampled on four occasions at weekly intervals, with those observed on a single occasion after a further 24 h of fasting. Analysis of the overnight fasted data revealed marked inter-individual differences, some of which were associated with parameters such as gender and subject body mass. For example, a striking positive association between body mass index and the expression of genes regulated by type 1 interferon was observed. Relatively subtle changes were observed following the extended fast. Nonetheless, the pattern of changes was consistent with stimulation of fatty acid oxidation, alterations in cell cycling and apoptosis and decreased expression of key pro-inflammatory genes. Stimulation of fatty acid oxidation is an expected response, most likely in all tissues, to fasting. The other processes highlighted provide indications of potential mechanisms that could contribute to the putative beneficial effects of intermittent fasting in humans

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF

    Accurate prediction of response to endocrine therapy in breast cancer patients: current and future biomarkers

    Get PDF
    WOS: 000390900700001PubMed ID: 27903276Approximately 70% of patients have breast cancers that are oestrogen receptor alpha positive (ER+) and are therefore candidates for endocrine treatment. Many of these patients relapse in the years during or following completion of adjuvant endocrine therapy. Thus, many ER+ cancers have primary resistance or develop resistance to endocrine therapy during treatment. Recent improvements in our understanding of how tumours evolve during treatment with endocrine agents have identified both changes in gene expression and mutational profiles, in the primary cancer as well as in circulating tumour cells. Analysing these changes has the potential to improve the prediction of which specific patients will respond to endocrine treatment. Serially profiled biopsies during treatment in the neoadjuvant setting offer promise for accurate and early prediction of response to both current and novel drugs and allow investigation of mechanisms of resistance. In addition, recent advances in monitoring tumour evolution through non-invasive (liquid) sampling of circulating tumour cells and cell-free tumour DNA may provide a method to detect resistant clones and allow implementation of personalized treatments for metastatic breast cancer patients. This review summarises current and future biomarkers and signatures for predicting response to endocrine treatment, and discusses the potential for using approved drugs and novel agents to improve outcomes. Increased prediction accuracy is likely to require sequential sampling, utilising preoperative or neoadjuvant treatment and/or liquid biopsies and an improved understanding of both the dynamics and heterogeneity of breast cancer.European CommissionEuropean Commission Joint Research Centre [658170]This work was funded by the European Commission H2020 Marie Sklodowska Curie Action Individual Fellowship (H2020-MSCA-IF, 658170) to CS and Breast Cancer Now to JMD and AHS

    Epidermal growth factor receptor immunohistochemistry: new opportunities in metastatic colorectal cancer

    Full text link
    corecore