680 research outputs found

    Retrofitting Crude Oil Refinery Heat Exchanger Networks to Minimise Fouling While Maximising Heat Recovery

    Get PDF
    The use of fouling factors in heat exchanger design and the lack of appreciation of fouling in traditional pinch approach has often resulted badly designed crude preheat networks that are expensive to maintain. The development of thermal and pressure drop models for crude oil fouling has allowed its effects to be quantified, so that techno-economic analyses can be performed and various design options compared. Application of these fouling models is carried out on two levels: on the assessment of adding extra area to individual exchangers, and the design of a complete network using the Modified Temperature Field Plot. Application to a refinery case study showed that both at the exchanger and network levels, designing for maximum heat recovery using traditional pinch approach results in the least efficient heat recovery over a time period when fouling occurs

    The Color--Flavor Transformation of induced QCD

    Full text link
    The Zirnbauer's color-flavor transformation is applied to the U(Nc)U(N_c) lattice gauge model, in which the gauge theory is induced by a heavy chiral scalar field sitting on lattice sites. The flavor degrees of freedom can encompass several `generations' of the auxiliary field, and for each generation, remaining indices are associated with the elementary plaquettes touching the lattice site. The effective, color-flavor transformed theory is expressed in terms of gauge singlet matrix fields carried by lattice links. The effective action is analyzed for a hypercubic lattice in arbitrary dimension. We investigate the corresponding d=2 and d=3 dual lattices. The saddle points equations of the model in the large-NcN_c limit are discussed.Comment: 24 pages, 6 figures, to appear in Int. J. Mod. Phys.

    Observation of surface states on heavily indium doped SnTe(111), a superconducting topological crystalline insulator

    Get PDF
    The topological crystalline insulator tin telluride is known to host superconductivity when doped with indium (Sn1x_{1-x}Inx_{x}Te), and for low indium contents (x=0.04x=0.04) it is known that the topological surface states are preserved. Here we present the growth, characterization and angle resolved photoemission spectroscopy analysis of samples with much heavier In doping (up to x0.4x\approx0.4), a regime where the superconducting temperature is increased nearly fourfold. We demonstrate that despite strong p-type doping, Dirac-like surface states persist

    The Perturbative Pole Mass in QCD

    Get PDF
    It is widely believed that the pole mass of a quark is infrared-finite and gauge-independent to all orders in perturbation theory. This seems not to have been proved in the literature. A proof is provided here.Comment: 12 pages REVTeX with 2 figures; archiving published version with note and references added. If you thought this was proven long ago see http://www-theory.fnal.gov/people/ask/TeX/mPole

    Gauge invariant determination of charged hadron masses

    Get PDF
    In this paper we show, for the first time, that charged-hadron masses can be calculated on the lattice without relying on gauge fixing at any stage of the calculations. In our simulations we follow a recent proposal and formulate full QCD+QED on a finite volume, without spoiling locality, by imposing C-periodic boundary conditions in the spatial directions. Electrically charged states are interpolated with a class of operators, originally suggested by Dirac and built as functionals of the photon field, that are invariant under local gauge transformations. We show that the quality of the numerical signal of charged-hadron masses is the same as in the neutral sector and that charged-neutral mass splittings can be calculated with satisfactory accuracy in this setup. We also discuss how to describe states of charged hadrons with real photons in a fully gauge-invariant way by providing a first evidence that the proposed strategy can be numerically viable

    Measuring the efficacy of anti-malarial drugs in vivo: quantitative PCR measurement of parasite clearance

    Get PDF
    BACKGROUND: Artemisinin-based combination therapy, currently considered the therapy of choice for uncomplicated Plasmodium falciparum malaria in endemic countries, may be under threat from newly emerging parasite resistance to the artemisinin family of drugs. Studies in Southeast Asia suggest some patients exhibit an extended parasite clearance time in the three days immediately following treatment with artesunate monotherapy. This phenotype is likely to become a more important trial endpoint in studies of anti-malarial drug efficacy, but currently requires frequent, closely spaced blood sampling in hospitalized study participants, followed by quantitation of parasite density by microscopy. METHODS: A simple duplex quantitative PCR method was developed in which distinct fluorescent signals are generated from the human and parasite DNA components in each blood sample. The human amplification target in this assay is the β tubulin gene, and the parasite target is the unique methionine tRNA gene (pgmet), which exhibits perfect sequence identity in all six Plasmodium species that naturally infect humans. In a small series of malaria cases treated as hospital in-patients, the abundance of pgmet DNA was estimated relative to the human DNA target in daily peripheral blood samples, and parasite clearance times calculated. RESULTS: The qPCR assay was reproducibly able to replicate parasite density estimates derived from microscopy, but provided additional data by quantification of parasite density 24 hours after the last positive blood film. Robust estimates of parasite clearance times were produced for a series of patients with clinical malaria. CONCLUSIONS: Large studies, particularly in Africa where children represent a major proportion of treated cases, will require a simpler blood sample collection regime, and a method capable of high throughput. The duplex qPCR method tested may fulfil these criteria, and should now be evaluated in such field studies

    Determining the Electronic Confinement of a Subsurface Metallic State

    Get PDF
    Dopant profiles in semiconductors are important for understanding nanoscale electronics. Highly conductive and extremely confined phosphorus doping profiles in silicon, known as Si:P δ-layers, are of particular interest for quantum computer applications, yet a quantitative measure of their electronic profile has been lacking. Using resonantly enhanced photoemission spectroscopy, we reveal the real-space breadth of the Si:P δ-layer occupied states and gain a rare view into the nature of the confined orbitals. We find that the occupied valley-split states of the δ-layer, the so-called 1Γ and 2Γ, are exceptionally confined with an electronic profile of a mere 0.40 to 0.52 nm at full width at half-maximum, a result that is in excellent agreement with density functional theory calculations. Furthermore, the bulk-like Si 3pz orbital from which the occupied states are derived is sufficiently confined to lose most of its pz-like character, explaining the strikingly large valley splitting observed for the 1Γ and 2Γ states

    Scaling analysis of the magnetic monopole mass and condensate in the pure U(1) lattice gauge theory

    Get PDF
    We observe the power law scaling behavior of the monopole mass and condensate in the pure compact U(1) gauge theory with the Villain action. In the Coulomb phase the monopole mass scales with the exponent \nu_m=0.49(4). In the confinement phase the behavior of the monopole condensate is described with remarkable accuracy by the exponent \beta_{exp}=0.197(3). Possible implications of these phenomena for a construction of a strongly coupled continuum U(1) gauge theory are discussed.Comment: Added references [1
    corecore