28 research outputs found

    Nephroplex: a kidney-focused NGS panel highlights the challenges of PKD1 sequencing and identifies a founder BBS4 mutation

    Get PDF
    Background: Genetic testing of patients with inherited kidney diseases has emerged as a tool of clinical utility by improving the patients' diagnosis, prognosis, surveillance and therapy. Methods: The present study applied a Next Generation Sequencing (NGS)-based panel, named NephroPlex, testing 115 genes causing renal diseases, to 119 individuals, including 107 probands and 12 relatives. Thirty-five (poly)cystic and 72 non (poly)cystic individuals were enrolled. The latter subgroup of patients included Bardet-Biedl syndrome (BBS) patients, as major components. Results: Disease-causing mutations were identified in 51.5 and 40% of polycystic and non-polycystic individuals, respectively. Autosomal dominant polycystic kidney disease (ADPKD) patients with truncating PKD1 variants showed a trend towards a greater slope of the age-estimated glomerular filtration rate (eGFR) regression line than patients with (i) missense variants, (ii) any PKD2 mutations and (iii) no detected mutations, according to previous findings. The analysis of BBS individuals showed a similar frequency of BBS4,9,10 and 12 mutations. Of note, all BBS4-mutated patients harbored the novel c.332+1G>GTT variant, which was absent in public databases, however, in our internal database, an additional heterozygote carrier was found. All BBS4-mutated individuals originated from the same geographical area encompassing the coastal provinces of Naples. Discussion: In conclusion, these findings indicate the potential for a genetic panel to provide useful information at both clinical and epidemiological levels

    [Bardoxolone: a new potential therapeutic agent in the treatment of autosomal dominant polycystic kidney disease?]

    No full text
    Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic cause of chronic renal failure. The natural history of ADPKD is characterized by development of multiple bilateral renal cysts that progressively destroy the architecture of the parenchyma and lead to an enlargement in the total kidney volume (TKV) and to the decline of the renal function. Cyst growth activates the immune system response causing interstitial inflammation and fibrosis that contribute to disease progression. In recent years, the therapeutic toolkit available to the nephrologist in the treatment of ADPKD has been enriched with new tools, and in this context bardoxolone is classified as a potential therapeutic agent. It is a semisynthetic derivative of triterpenoids, a family of compounds widely used in traditional Asian medicine for their multiple effects. Bardoxolone exerts antioxidant activity by promoting the activation of Nrf2 (Nuclear factor erythroid2-derivative - 2) and the downregulation of the proinflammatory NF-kB (Nuclear factor kappa-light-chain-enhancer of activated B cells) signaling. Several pieces of evidence support the use of bardoxolone in the treatment of chronic kidney disease (CKD) documenting an effect on the increase of glomerular filtration rate (GFR). However, its use is limited to patients at risk of heart failure. The FALCON study will clarify the efficacy and safety of bardoxolone in the treatment of ADPKD

    A case of valproic acid-induced acute pancreatitis in tuberous sclerosis coexisting with end-stage renal disease

    No full text
    Tuberous sclerosis complex (TCS) is a genetic disorder with a variable clinical presentation. It is commonly characterized by seizures, mental retardation and cutaneous angiofibromas. Renal manifestations frequently include angiomyolipomas and cysts which lead to chronic kidney disease. We report a case of valproic acid-induced acute pancreatitis in a dialysis patient affected by TCS. The case demonstrates the importance of assessing antiepileptic drug treatment in dialysis patients. © 2012 Società Italiana di Nefrologia
    corecore