1,375 research outputs found

    Additive Manufacturable Materials for Electrochemical Biosensor Electrodes

    Get PDF
    With the impending Industrial Revolution 4.0, the information produced by sensors will be central in many applications. This includes the healthcare sector, where affordable healthcare and precision medicine are highly sought after. Electrochemical sensors have the potential to produce affordable, high sensitivity and specificity, intuitive, and rapid point‐of‐care diagnostics. Underpinning these achievements is the choice of material and the fabrication thereof. In this review, the different types of materials used in electrochemical biosensors are reported, with a focus on synthetic conductive materials. The review demonstrates that there is an abundance of materials to select from, and compositing different types of materials further widens their applicability in biosensors. In addition, the fabrication of such materials using the state‐of‐the‐art of fabrication technology, additive manufacturing (AM), is also detailed. The need for compositing is evident in AM, as the feedstock for certain AM technologies is inherently nonconductive. Both material choice and fabrication technologies limitations are also discussed to highlight opportunities for growth. The review highlights how recent technological advancements have the potential to drive the healthcare industry toward achieving its primary goals

    Electrochemical biosensors: a nexus for precision medicine

    Get PDF
    Precision medicine is a field with huge potential for improving a patient's quality of life, wherein therapeutic drug monitoring (TDM) can provide actionable insights. More importantly, incorrect drug dose is a common contributor to medical errors. However, current TDM practice is time-consuming and expensive, and requires specialised technicians. One solution is to use electrochemical biosensors (ECBs), which are inexpensive, portable, and highly sensitive. In this review, we explore the potential for ECBs as a technology for on-demand drug monitoring, including microneedles, continuous monitoring, synthetic biorecognition elements, and multi-material electrodes. We also highlight emerging strategies to achieve continuous drug monitoring, and conclude by appraising recent developments and providing an outlook for the field

    Inkjet drug printing onto contact lenses: Deposition optimisation and non-invasive dose verification

    Get PDF
    Inkjet printing has the potential to advance the treatment of eye diseases by printing drugs on demand onto contact lenses for localised delivery and personalised dosing, while near-infrared (NIR) spectroscopy can further be used as a quality control method for quantifying the drug but has yet to be demonstrated with contact lenses. In this study, a glaucoma therapy drug, timolol maleate, was successfully printed onto contact lenses using a modified commercial inkjet printer. The drug-loaded ink prepared for the printer was designed to match the properties of commercial ink, whilst having maximal drug loading and avoiding ocular inflammation. This setup demonstrated personalised drug dosing by printing multiple passes. Light transmittance was found to be unaffected by drug loading on the contact lens. A novel dissolution model was built, and in vitro dissolution studies showed drug release over at least 3 h, significantly longer than eye drops. NIR was used as an external validation method to accurately quantify the drug dose. Overall, the combination of inkjet printing and NIR represent a novel method for point-of-care personalisation and quantification of drug-loaded contact lenses

    Connected healthcare: Improving patient care using digital health technologies

    Get PDF
    Now more than ever, traditional healthcare models are being overhauled with digital technologies of Healthcare 4.0 being increasingly adopted. Worldwide, digital devices are improving every stage of the patient care pathway. For one, sensors are being used to monitor patient metrics 24/7, permitting swift diagnosis and interventions. At the treatment stage, 3D printers are currently being investigated for the concept of personalised medicine by allowing patients access to on-demand, customisable therapeutics. Robots are also being explored for treatment, by empowering precision surgery or targeted drug delivery. Within medical logistics, drones are being leveraged to deliver critical treatments to remote areas, collect samples, and even provide emergency aid. To enable seamless integration within healthcare, the Internet of Things technology is being exploited to form closed-loop systems that remotely communicate with one another. This review outlines the most promising healthcare technologies and devices, their strengths, drawbacks, and scopes for clinical adoption

    Cortical Factor Feedback Model for Cellular Locomotion and Cytofission

    Get PDF
    Eukaryotic cells can move spontaneously without being guided by external cues. For such spontaneous movements, a variety of different modes have been observed, including the amoeboid-like locomotion with protrusion of multiple pseudopods, the keratocyte-like locomotion with a widely spread lamellipodium, cell division with two daughter cells crawling in opposite directions, and fragmentations of a cell to multiple pieces. Mutagenesis studies have revealed that cells exhibit these modes depending on which genes are deficient, suggesting that seemingly different modes are the manifestation of a common mechanism to regulate cell motion. In this paper, we propose a hypothesis that the positive feedback mechanism working through the inhomogeneous distribution of regulatory proteins underlies this variety of cell locomotion and cytofission. In this hypothesis, a set of regulatory proteins, which we call cortical factors, suppress actin polymerization. These suppressing factors are diluted at the extending front and accumulated at the retracting rear of cell, which establishes a cellular polarity and enhances the cell motility, leading to the further accumulation of cortical factors at the rear. Stochastic simulation of cell movement shows that the positive feedback mechanism of cortical factors stabilizes or destabilizes modes of movement and determines the cell migration pattern. The model predicts that the pattern is selected by changing the rate of formation of the actin-filament network or the threshold to initiate the network formation

    A robotic crawler exploiting directional frictional interactions: Experiments, numerics and derivation of a reduced model

    Get PDF
    We present experimental and numerical results for a model crawler which is able to extract net positional changes fromreciprocal shape changes, i.e. 'breathinglike' deformations, thanks to directional, frictional interactions with a textured solid substrate, mediated by flexible inclined feet. We also present a simple reduced model that captures the essential features of the kinematics and energetics of the gait, and compare its predictions with the results from experiments and from numerical simulations
    • 

    corecore