890 research outputs found

    Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke

    Get PDF
    Understanding circuit-level manipulations that affect the brain\u27s capacity for plasticity will inform the design of targeted interventions that enhance recovery after stroke. Following stroke, increased contralesional activity (e.g. use of the unaffected limb) can negatively influence recovery, but it is unknown which specific neural connections exert this influence, and to what extent increased contralesional activity affects systems- and molecular-level biomarkers of recovery. Here, we combine optogenetic photostimulation with optical intrinsic signal imaging to examine how contralesional excitatory activity affects cortical remodeling after stroke in mice. Following photothrombosis of left primary somatosensory forepaw (S1FP) cortex, mice either recovered spontaneously or received chronic optogenetic excitation of right S1FP over the course of 4 weeks. Contralesional excitation suppressed perilesional S1FP remapping and was associated with abnormal patterns of stimulus-evoked activity in the unaffected limb. This maneuver also prevented the restoration of resting-state functional connectivity (RSFC) within the S1FP network, RSFC in several networks functionally distinct from somatomotor regions, and resulted in persistent limb-use asymmetry. In stimulated mice, perilesional tissue exhibited transcriptional changes in several genes relevant for recovery. Our results suggest that contralesional excitation impedes local and global circuit reconnection through suppression of cortical activity and several neuroplasticity-related genes after stroke, and highlight the importance of site selection for targeted therapeutic interventions after focal ischemia

    Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Get PDF
    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004), SENEX (June–July 2013), and SEAC4RS (August–September 2013) and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (∼ 42–45%), followed by NOx (31%), total peroxy nitrates (ΣPNs; 14%), and total alkyl nitrates (ΣANs; 9–12%) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOxemissions will lead to a continued decline in surface ozone and less frequent high-ozone events

    The K2 M67 Study: A Curiously Young Star in an Eclipsing Binary in an Old Open Cluster

    Full text link
    We present an analysis of a slightly eccentric (e=0.05e=0.05), partially eclipsing long-period (P=69.73P = 69.73 d) main sequence binary system (WOCS 12009, Sanders 1247) in the benchmark old open cluster M67. Using Kepler K2 and ground-based photometry along with a large set of new and reanalyzed spectra, we derived highly precise masses (1.111±0.0151.111\pm0.015 and 0.748±0.005M⊙0.748\pm0.005 M_\odot) and radii (1.071±0.008±0.0031.071\pm0.008\pm0.003 and 0.713±0.019±0.026R⊙0.713\pm0.019\pm0.026 R_\odot, with statistical and systematic error estimates) for the stars. The radius of the secondary star is in agreement with theory. The primary, however, is approximately 15%15\% smaller than reasonable isochrones for the cluster predict. Our best explanation is that the primary star was produced from the merger of two stars, as this can also account for the non-detection of photospheric lithium and its higher temperature relative to other cluster main sequence stars at the same VV magnitude. To understand the dynamical characteristics (low measured rotational line broadening of the primary star and the low eccentricity of the current binary orbit), we believe that the most probable (but not the only) explanation is the tidal evolution of a close binary within a primordial triple system (possibly after a period of Kozai-Lidov oscillations), leading to merger approximately 1Gyr ago. This star appears to be a future blue straggler that is being revealed as the cluster ages and the most massive main sequence stars die out.Comment: 33 pages, 11 figures, accepted to AJ, photometry files will be available with the electronic journal articl

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed
    • …
    corecore