4,667 research outputs found

    Full potential analysis and design of transonic propellers by Philip B. Poll.

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1991.Includes bibliographical references (leaves 83-84).M.S

    Simulation of local contact conditions in the secondary shear zone in dry and wet metal cutting

    Get PDF
    Cutting fluids significantly influence the contact conditions in metal cutting, e.g. stresses or contact areas. Due to the limited accessibility of the chip-tool contact, the identification of contact conditions is challenging. In this paper, a simulation model is created and used to identify the real contact area in dry and wet cutting. Experimentally identified normal stresses and chip-tool roughness serve as input parameters. The results show higher normal stresses in wet cutting, which results in a higher real contact area between rake face and chip

    On the Elastohydrodynamic Film-Forming Properties of Metalworking Fluids and Oil-in-Water Emulsions

    Get PDF
    Oil-in-water (O/W) emulsions are water-based lubricants and used as fire-resistant hydraulic fluids and metalworking fluids (MWFs) in industry. The (elasto-)hydrodynamic film-forming properties of O/W emulsions have been studied extensively in literature. Typical elastohydrodynamic lubrication (EHL) behaviors are revealed at low rolling speeds followed by a starved EHL regime at elevated speeds. These emulsions are self-prepared and mostly stable only for a limited time ranging from hours to several days. By contrast, the film-forming behavior of water-miscible commercial MWFs (long-term stable O/W emulsions) has rarely been reported. This restricts the understanding of the lubrication status of many tribological interfaces in manufacturing processes, e.g., the chip-tool contact in cutting. In this work, the (elasto-)hydrodynamic film-forming property of two commercial MWFs is investigated by measuring the film thickness on two ball-on-disc test rigs using different optical interferometry techniques. For comparison, two self-prepared simple O/W emulsions with known formulation have also been investigated. Experimental results from the two test rigs agree well and show that the two self-prepared emulsions have typical EHL behaviors as reported in literature. However, for the two commercial MWFs, there is almost no (elasto-)hydrodynamic film-forming ability over the whole range of speeds used in this study. This could be explained by the cleaning and re-emulsification effects of the MWFs. The lubrication mechanism of the two MWFs is mainly boundary lubrication rather than hydrodynamic lubrication. Graphical Abstract: [Figure not available: see fulltext.]

    Infrared activity of hydrogen molecules trapped in Si

    Get PDF
    The rovibrational-translational states of a hydrogen molecule moving in a cage site in Si, when subjected to an electrical field arising from its surroundings, are investigated. The wave functions are expressed in terms of basis functions consisting of the eigenfunctions of the molecule confined to move in the cavity and rovibrational states of the free molecule. The energy levels, intensities of infrared and Raman transitions, effects of uniaxial stress, and a neighboring oxygen defect are found and compared with existing experimental data

    On the Elastohydrodynamic Film-Forming Properties of Metalworking Fluids and Oil-in-Water Emulsions

    Get PDF
    Oil-in-water (O/W) emulsions are water-based lubricants and used as fire-resistant hydraulic fluids and metalworking fluids (MWFs) in industry. The (elasto-)hydrodynamic film-forming properties of O/W emulsions have been studied extensively in literature. Typical elastohydrodynamic lubrication (EHL) behaviors are revealed at low rolling speeds followed by a starved EHL regime at elevated speeds. These emulsions are self-prepared and mostly stable only for a limited time ranging from hours to several days. By contrast, the film-forming behavior of water-miscible commercial MWFs (long-term stable O/W emulsions) has rarely been reported. This restricts the understanding of the lubrication status of many tribological interfaces in manufacturing processes, e.g., the chip-tool contact in cutting. In this work, the (elasto-)hydrodynamic film-forming property of two commercial MWFs is investigated by measuring the film thickness on two ball-on-disc test rigs using different optical interferometry techniques. For comparison, two self-prepared simple O/W emulsions with known formulation have also been investigated. Experimental results from the two test rigs agree well and show that the two self-prepared emulsions have typical EHL behaviors as reported in literature. However, for the two commercial MWFs, there is almost no (elasto-)hydrodynamic film-forming ability over the whole range of speeds used in this study. This could be explained by the cleaning and re-emulsification effects of the MWFs. The lubrication mechanism of the two MWFs is mainly boundary lubrication rather than hydrodynamic lubrication. Graphical Abstract: [Figure not available: see fulltext.].</p

    Velocity Integration in a Multilayer Neural Field Model of Spatial Working Memory

    Get PDF
    We analyze a multilayer neural field model of spatial working memory, focusing on the impact of interlaminar connectivity, spatial heterogeneity, and velocity inputs. Models of spatial working memory typically employ networks that generate persistent activity via a combination of local excitation and lateral inhibition. Our model comprises a multilayer set of equations that describes connectivity between neurons in the same and different layers using an integral term. The kernel of this integral term then captures the impact of different interlaminar connection strengths, spatial heterogeneity, and velocity input. We begin our analysis by focusing on how interlaminar connectivity shapes the form and stability of (persistent) bump attractor solutions to the model. Subsequently, we derive a low-dimensional approximation that describes how spatial heterogeneity, velocity input, and noise combine to determine the position of bump solutions. The main impact of spatial heterogeneity is to break the translation symmetry of the network, so bumps prefer to reside at one of a finite number of local attractors in the domain. With the reduced model in hand, we can then approximate the dynamics of the bump position using a continuous time Markov chain model that describes bump motion between local attractors. While heterogeneity reduces the effective diffusion of the bumps, it also disrupts the processing of velocity inputs by slowing the velocity-induced propagation of bumps. However, we demonstrate that noise can play a constructive role by promoting bump motion transitions, restoring a mean bump velocity that is close to the input velocity
    • …
    corecore