25 research outputs found

    The Antibiotics Dityromycin and GE82832 Bind Protein S12 and Block EF-G-Catalyzed Translocation

    Get PDF
    SummaryThe translocation of mRNA and tRNA through the ribosome is catalyzed by elongation factor G (EF-G), a universally conserved guanosine triphosphate hydrolase (GTPase). The mechanism by which the closely related decapeptide antibiotics dityromycin and GE82832 inhibit EF-G-catalyzed translocation is elucidated in this study. Using crystallographic and biochemical experiments, we demonstrate that these antibiotics bind to ribosomal protein S12 in solution alone as well as within the small ribosomal subunit, inducing long-range effects on the ribosomal head. The crystal structure of the antibiotic in complex with the 70S ribosome reveals that the binding involves conserved amino acid residues of S12 whose mutations result in in vitro and in vivo antibiotic resistance and loss of antibiotic binding. The data also suggest that GE82832/dityromycin inhibits EF-G-catalyzed translocation by disrupting a critical contact between EF-G and S12 that is required to stabilize the posttranslocational conformation of EF-G, thereby preventing the ribosome-EF-G complex from entering a conformation productive for translocation

    Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance

    Get PDF
    Many antibiotics inhibit bacterial growth by binding to the ribosome and interfering with protein biosynthesis. Macrolides represent one of the most successful classes of ribosome-targeting antibiotics. The main clinically relevant mechanism of resistance to macrolides is dimethylation of the 23S rRNA nucleotide A2058, located in the drug-binding site, a reaction catalyzed by Erm-type rRNA methyltransferases. Here, we present the crystal structure of the Erm-dimethylated 70S ribosome at 2.4 Å resolution, together with the structures of unmethylated 70S ribosome functional complexes alone or in combination with macrolides. Altogether, our structural data do not support previous models and, instead, suggest a principally new explanation of how A2058 dimethylation confers resistance to macrolides. Moreover, high-resolution structures of two macrolide antibiotics bound to the unmodified ribosome reveal a previously unknown role of the desosamine moiety in drug binding, laying a foundation for the rational knowledge-based design of macrolides that can overcome Erm-mediated resistance

    Peptide inhibitors of bacterial protein synthesis with broad spectrum and SbmA-independent bactericidal activity against clinical pathogens.

    Get PDF
    Proline-rich antimicrobial peptides (PrAMPs) are promising lead compounds for developing new antimicrobials, however their narrow spectrum of action is limiting. PrAMPs kill bacteria binding to their ribosomes and inhibiting protein synthesis. In this study, 133 derivatives of the PrAMP Bac7(1-16) were synthesized to identify the crucial residues for ribosome inactivation and antimicrobial activity. Then, five new Bac7(1-16) derivatives were conceived and characterized by antibacterial and membrane permeabilization assays, by X-ray crystallography and molecular dynamics simulations. Some derivatives displayed broad spectrum activity, encompassing Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Staphylococcus aureus. Two peptides out of five, acquired a weak membrane-perturbing activity, while maintaining the ability to inhibit protein synthesis. These derivatives became independent of the SbmA transporter, commonly used by native PrAMPs, suggesting that they obtained a novel route to enter bacterial cells. PrAMP-derived compounds could become new-generation antimicrobials to combat the antibiotic-resistant pathogens

    Development of 2nd generation aminomethyl spectinomycins that overcome native efflux in Mycobacterium abscessus

    Get PDF
    Mycobacterium abscessus (Mab), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against Mab over the parent SPC. Mechanism of action and crystallography studies demonstrate that the eAmSPCs display a mode of ribosomal inhibition consistent with SPC. However, they exert their increased antimicrobial activity through enhanced accumulation, largely by circumventing efflux mechanisms. The N-ethylene linkage within this series plays a critical role in avoiding TetV-mediated efflux, as lead eAmSPC 2593 displays a mere fourfold susceptibility improvement against Mab ΔtetV, in contrast to the 64-fold increase for SPC. Even a minor shortening of the linkage by a single carbon, akin to 1st generation AmSPC 1950, results in a substantial increase in MICs and a 16-fold rise in susceptibility against Mab ΔtetV. These shifts suggest that longer linkages might modify the kinetics of drug expulsion by TetV, ultimately shifting the equilibrium towards heightened intracellular concentrations and enhanced antimicrobial efficacy. Furthermore, lead eAmSPCs were also shown to synergize with various classes of anti-Mab antibiotics and retain activity against clinical isolates and other mycobacterial strains. Encouraging pharmacokinetic profiles coupled with robust efficacy in Mab murine infection models suggest that eAmSPCs hold the potential to be developed into treatments for Mab and other NTM infections

    The Mechanisms of Action of Ribosome-Targeting Peptide Antibiotics

    No full text
    The ribosome is one of the major targets in the cell for clinically used antibiotics. However, the increase in multidrug resistant bacteria is rapidly reducing the effectiveness of our current arsenal of ribosome-targeting antibiotics, highlighting the need for the discovery of compounds with new scaffolds that bind to novel sites on the ribosome. One possible avenue for the development of new antimicrobial agents is by characterization and optimization of ribosome-targeting peptide antibiotics. Biochemical and structural data on ribosome-targeting peptide antibiotics illustrates the large diversity of scaffolds, binding interactions with the ribosome as well as mechanism of action to inhibit translation. The availability of high-resolution structures of ribosomes in complex with peptide antibiotics opens the way to structure-based design of these compounds as novel antimicrobial agents

    Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design

    No full text
    Genetic information is translated into proteins by the ribosome. Structural studies of the ribosome and of its complexes with factors and inhibitors have provided invaluable information on the mechanism of protein synthesis. Ribosome inhibitors are among the most successful antimicrobial drugs and constitute more than half of all medicines used to treat infections. However, bacterial infections are becoming increasingly difficult to treat because the microbes have adapted to become resistant to the most effective antibiotics, creating a major public health care threat. This has spurred a renewed interest in structure-function studies of protein synthesis inhibitors and, in few cases, compounds have been developed into potent therapeutic agents against drug-resistant pathogens. In this review, we describe the modes of action of many ribosome-targeting antibiotics, highlight the major resistance mechanisms developed by pathogenic bacteria, and discuss recent advances in structure-assisted design of new molecules
    corecore